• Title/Summary/Keyword: ductile iron

Search Result 213, Processing Time 0.028 seconds

Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) - I. Gas Atomization and Production of Composite Powders - (가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu 분말과의 복합화 및 SPS 거동 (I) - I. 가스분무 및 복합화 -)

  • Ryu, Ho-Jin;Lim, Jae-Hyun;Kim, Ji-Soon;Kim, Jin-Chun;Kim, H.J.
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.316-325
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 $\mu$m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 $\mu$m showed that the glass transition, T$_g$, onset crystallization, T$_x$, and super-cooled liquid range $\Delta$T=T$_x$-T$_g$ were 512, 548 and 36$^{\circ}C$, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.

Production of Fe Amorphous Powders by Gas-Atomization Process and Subsequent Spark Plasma Sintering of Fe amorphous-ductile Cu Composite Powder Produced by Ball-milling Process (II) - II. SPS Behaviors of Composite Powders and their Characteristics - (가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu분말과의 복합화 및 SPS 거동 (II) - II. 복합분말의 SPS와 특성 -)

  • Kim, Jin-Chun;Kim, Ji-Soon;Kim, H.J.;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.326-335
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.

Recovery of $\alpha$-iron from converter dust in a steelmaking factory (제철소 전노 dust로부터 철분강 회수에 관한 연구)

  • 김미성;김미성;오재현;김태동
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.27-38
    • /
    • 1993
  • In this study, we investigated the grinding and sedimentation(elutriation) process of the dusts for the effective separation of high purity iron and iron oxides. For characterization of the dust, particle size distribution and chemical composition, were examined. The results obtained in this study may be summarized as follows : 1. The converter CF(clarifier) dust of the Pohang 1st, 2nd steel making factory and EC(Evaporation Cooler), EP(Eltrostatic precititator) dust of the Kwangyang 2nd steel making factory are composed $\alpha$-Fe(21~50%), FeO(wustite)$Fe_3$$O_4$(magnetite), $Fe_2$$O_3$, CaO, $Al_2$$O_3$, $SiO_2$, and etc. 2. Pure iron has ductile characteristic in nature, particle size of the pure iron increase by increasing the grinding time. On the other hand, it is conformed that bo고 particles of hematite and magnetite become less than 325 mesh after 10 minutes grinding. 3. By applying the elutriation technique for the EC dust of the Kwangyang 2nd steel making factory, the iron powder of high content more than 99.17% of pure Fe was recovered with 37.8% yield at grinding time for 40 minutes. 4. By applying the elutriation technique for the CF dust of the Pohang 2nd steel making factory, the iron powder of high content more than 98.38% of pure Fe was recovered with 44.42% yield at grinding time for 40 minutes. 5. When magnetic separation was performed using plastic bonding magnet of 70 gauss, more than 98% Fe grade of iron powder was recovered in the size range +65 -200 mesh but the recovery of it was low.

  • PDF

Effect of Dissolved Oxygen (DO) on Internal Corrosion of Water Pipes

  • Jung, Hae-Ryong;Kim, Un-Ji;Seo, Gyu-Tae;Lee, Hyun-Dong;Lee, Chun-Sik
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.195-199
    • /
    • 2009
  • A series of laboratory-scale corrosion experiments was carried out to observe the effect of dissolved oxygen (DO) in the presence of other water quality parameters, such as hardness, Cl-, and pH using various pipe materials. In addition, a simulated loop system was installed at a water treatment plant for pilot-scale experiment. Laboratory-scale experiment showed that corrosion rates for galvanized steel pipe (GSP), carbon steel pipe (CSP), and ductile cast iron pipe (DCIP) were decreased to 72%, 75%, and 91% by reducing DO concentration from 9${\pm}$0.5 mg/L to 2${\pm}$0.5 mg/L. From the pilot scale experiment, it was further identified that the average ionization rate of zinc in GSP decreased from 0.00533 to 0.00078 mg/$cm^2$/d by controlling the concentration of DO. The reduction of average ionization rate for copper pipe (CP) and stainless steel pipe (SSP) were 71.4% for Cu and 63.5% for Fe, respectively. From this study, it was concluded that DO could be used as a major parameter in controlling the corrosion of water pipes.

Successive Max-min Connection-Ratio Preoblem:Routing with Fairness and Efficiency in Circuit Telecommunication Networks (연속적인 최대-최소 연결비율 문제: 회선망에서의 공정성 및 효율성을 보장하는 경로설정)

  • 박구현;우재현
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.13-29
    • /
    • 1997
  • This paper considers a new routing problem, successive max-min connection ratio problem (SMCRP), arised in circuit telecommunication networks such as SONET and WDM optical transport network. An optimization model for SMCRP is established based on link-flow formulation. It's first optimization process is an integral version of maximum concurrent flow problem. Integer condition does not give the same connection-ratio of each node-pair at an optimal solution any more. It is also an integral multi-commodity flow problem with fairness restriction. In order to guarantee fairness to every node-pair the minimum of connection ratios to demand is maximized. NP- hardness of SMCRP is proved and a heuristic algorithm with polynomial-time bound is developed for the problem. Augmenting path and rerouting flow are used for the algorithm. The heuristic algorithm is implemented and tested for networks of different sizes. The results are compared with those given by GAMS/OSL, a popular commercial solver for integer programming problem.n among ferrite-pearlite matrix, the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 70%, distribution range of fatigue.ife was small in same stress level. (2) $\sqrt{area}_{max}$ of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of $\sqrt{area}_{max}$ may be used as a guideline for the control of inclusion size in the steelmaking.

  • PDF

The Austempering Transformation Behavior of Fe-0.7wt.%C-2.3wt.%Si-0.3wt.%Mn Steel (Fe-0.7wt.%C-2.3wt.%Si-0.3wt.%Mn 강의 오스템퍼링 변태 거동)

  • Shin, Sang-Yun;Lee, Do-Hoon;Kim, Seo-Eun;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • The austempering transformation behavior in Fe-0.7wt.%C-2.3wt.%Si-0.3wt.%Mn steel is investigated. Each specimen was austenitized for 60 min at $900^{\circ}C$, and austempered at $380^{\circ}C$ for different time periods varying from 2 min to 256 min. After the austempering heat treatment, the Stage I and II evolutions are performed using optical metallography, X-ray diffraction and image analyses. Variations in the X-ray diffraction patterns and lattice parameters of the ferrite and austenite demonstrate that the residual austenite decomposes into ferrite and carbide during the Stage II evolution; moreover the amount of ferrite increases during the Stage I evolution. While the amount of austenite increases during Stage I, it dicreases during Stage II. Overall, the variations in the volume fractions of the microstructure and carbide formation in stages I and II meet high temperature austempering reaction of the ausferrite microstructure.

Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • 김동환;김병민;이영석;유선준;주웅용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF

Morphological Variation of Bainitic Ferrite in Transformation Process of Austempered Ductile Iron (구상흑연주철의 Bainite변태과정에서 Bainitic Ferrite의 형상변화)

  • Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.12 no.5
    • /
    • pp.403-411
    • /
    • 1992
  • The growth characteristics of bainite at early stage in the fast quenched spheroidal graphite cast irons containing 0.06%Mn and 0.45%Mn during austempering process, was investigated with optical and scanning electron microscope. The following results regarding the effects of Mn and isothermal heat treatment on the morphological variation of bainitic ferrite were obtained. The morphology of bainite varies from acicular below 350$^{\circ}C$ to feather shape above 350$^{\circ}C$. The period of isothermal treatment also affects the shape of bainite at the fixed temperature. At 350$^{\circ}C$, bainite is bamboo leaf-like up to 200 secs of isothermal holding time and with further increasing time up to 300 secs, changes to a mixed structure consisting of both feather and bamboo leaf and, finally becomes all feather shape at 900 secs. The morphology of bainitic ferrite formed at early stage of 300$^{\circ}C$ isothermal treatment is similar to that of bainitic ferrite formed at 250$^{\circ}C$ or 350$^{\circ}C$ with unbranched, linear ferrite. However, bainitic ferrite divides into branches with increasing isothermal treatment, which occurs more fast at 400$^{\circ}C$ than at 350$^{\circ}C$. The difference in adding amount of Mn influences the morphology of bainitic ferrite in upper bainite. The bainitic ferrite with 0.45%Mn is observed to be more stable than that with 0.06%Mn, remaining unbranched for a longer period at the same temperature.

  • PDF

Mechanical Properties of Austempered Fe-2.0wt.%Si-0.3wt.%Mn Steel with various Carbon Contents (탄소함량 변화에 따른 오스템퍼드 Fe-2.0wt.%Si-0.3wt.%Mn 강의 기계적 성질)

  • Ha, Jong-Gyu;Shin, Sang-Yun;Lee, Do-Hoon;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, we investigated the effect of carbon on mechanical properties with different austempering conditions of high carbon(0.7~1.3wt.%C)-2.0wt.%Si steels. The specimens were austenitized at 850, 925 and $1020^{\circ}C$, and austempered at 260, 320 and $380^{\circ}C$ for the various period of time from 3 min to 300 min. After heat treatment, the evolution of stage I and stage II was identified with optical microscope, XRD and hardness test. When the austempering temperature was $260^{\circ}C$, the microstructure consisted of the lower ausferrite while the upper ausferrite micro-structure was formed at $380^{\circ}C$. As the austempering temperature increases from 260 to $380^{\circ}C$, the tensile strength decreases and elongation increases. In addition, when carbon content increases, tensile strength and elongation decrease.

Development of Control Technology of Austempered Ductile Iron with High Strength and High Toughness for Gear Parts. (고강도 ADI의 기어부품 개발에 관한 연구)

  • Kim, Won-Yong;Kim, Kwang-Bae;Kang, In-Chan;An, Sang-Uk
    • Journal of Korea Foundry Society
    • /
    • v.13 no.2
    • /
    • pp.187-193
    • /
    • 1993
  • In this study, it was examined the relationship between the microstructure, fatigue properties, mechanical properties and retained austenite volume of Mo-Ni ADI corresponding to various austempering temperatures. When the austempering temperature is increased to $370^{\circ}C$, acicular bainite structure was found to be transformed to feathery bainite structure. But at the austempering temperature of $420^{\circ}C$, the dissolved bainite lath was showned. Up to the austempering temperature of $370^{\circ}C$, the volume of retained austenite was increased. However at the austempering temperature of $420^{\circ}C$ a large amount of retained austenite was decreased. In this study, the retained austenite volume was determined by XRD(X-ray diffraction). It was observed that the optimum fatigue properties can be obtained at the condition of austempering temperature $370^{\circ}C$. Under the such conditions, fatigue limit determined as the value of 290 MPa, tensile strength 877MPa elongation 6%, hardness 285(BHN), impact values(CVN) 9.2J and retained austenite volume 30.3%, respectively.

  • PDF