• Title/Summary/Keyword: ductile element

Search Result 266, Processing Time 0.023 seconds

Evaluation of Role Flangeability of Steel Sheet with respect to the Role Processing Condition (가공조건에 따른 강판의 구멍확장성 평가)

  • Lee, J.S.;Kim, Y.K.;Huh, H.;Kim, H.K.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.359-362
    • /
    • 2006
  • In this paper, hole expanding tests are carried out in order to identify the effect of the hole process condition on the hole expanding ratio. Specimens with two different hole conditions are prepared: one is produced with punching process; and the other is reamed after punching to get smoother hole surface. The experimental results show that the facture mechanism and the hole expanding ratio are quite different with respect to the hole condition. The hole expanding ratio of a punched specimen is much smaller than that of a reamed one due to the difference of surface roughness and internal defects. For the thorough investigation of those effects, tensile tests of a specimen with a hole are performed. The fracture strain is obtained with different hole conditions and a finite element analysis of the hole flanging process carried out. The experimental results are confirmed and reevaluated by finite element analysis of the hole flanging process with ductile fracture criterion proposed.

  • PDF

Effects of Alloying Element and Heat Treatment on the Mechanical Properties of Ductile Cast Iron Poured into Shell Stack Mold (쉘 적층 주조 구상흑연주철의 기계적 성질에 미치는 합금원소 및 열처리의 영향)

  • Kim, Hyo-Min;Kwon, Min-Young;Chun, Byung-Chul;Kwon, Do-Young;Kim, Gi-Yeob;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.76-84
    • /
    • 2020
  • The effects of Alloying Element and Heat Treatment on the mechanical properties of ductile cast iron poured into shell stack molds were investigated. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of tin and copper added, respectively. Those were greatly increased with the increased amount of tin added and the elongation was roughly decreased with it. In the simultaneous addition of copper and tin, the strength and hardness of the tin increased, but the elongation rate decreased. Those were greatly increased and this was decreased with normalizing. In the case of specimens with smaller section sizes during austempering processing, the strength and hardness were higher than those with larger sections, but the elongation rate was lower.

Study on Chevron Crack Occurring in a 4-stage Open Cold Extrusion Process by Finite Element Method (유한요소법을 이용한 4단 개방냉간압출시 발생하는 셰브론 크랙에 관한 연구)

  • Hwang, H.S.;Lee, Y.S.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.210-215
    • /
    • 2017
  • In this paper, utilizing the theory of ductile fracture a chevron crack in a 4-stage open cold extrusion process is predicted by the finite element methods and then compared with previous experiments. The normalized Cockcroft-Latham damage model is employed and the material is identified using a tensile test based material identification technique that gives fracture information as well as flow stress at large strain. A large difference between the predicted cracks and actual experiments is observed, specifically narrower width and greater maximum height of the crack. This reveals the limitation of this approach based on the conventional theory of ductile fracture. Based on the observations and the related criticisms, a new approach for predicting the chevron crack is proposed, suggesting that either the critical damage should not be a fixed material constant, or that the conventional fracture theory should be considered with the effects of embrittlement due to accumulated plastic deformation while the duration of crack generation and plastic deformation should be reduced.

Evaluating the performance of OBS-C-O in steel frames under monotonic load

  • Bazzaz, Mohammad;Andalib, Zahra;Kafi, Mohammad Ali;Kheyroddin, Ali
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.699-712
    • /
    • 2015
  • Bracing structures with off-centre bracing system is one of the new resistant systems that frequently used in the frame with pin connections. High ductility, high-energy dissipation and decrease of base shear are advantages of this bracing system. However, beside these advantages, reconstruction and hard repair of off-centre bracing system cause inappropriate performance in the earthquake. Therefore, in this paper, the goal is investigating the behavior of this type of bracing system with ductile element (circular dissipater), in order to providing replacement of damaged member without needing repair or reconstruction of the general system. To achieve this purpose, some numerical studies have been performed using ANSYS software, a frame with off-centre bracing system and optimum eccentricity (OBS-C-O) and another frame with the same identifications without ductile element (OBS) has been created. In order to investigate precisely on the optimum placement of circular elements under monotonic load again three steal frames were modeled. Furthermore, the behavior of this general system investigated for the first time, linear and nonlinear behavior of these two steel frames compared to each other, to achieve the benefit of using the circular element in an off-centre bracing system. Eventually, the analytical results revealed that the performance of steel ring at the end of off-centre braces system illustrating as a first defensive line and buckling fuse in the off-centre bracing system.

Analysis for Deformation and Fracture Behavior of Magnesium during Equal Channel Angular Pressing by the Finite Element Method (마그네슘의 등통로각압축 공정 시 변형 및 파괴 거동에 대한 유한요소해석)

  • Yoon, Seung Chae;Pham, Quang;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.144-149
    • /
    • 2008
  • Equal channel angular pressing (ECAP) has been studied intensively over the decade as a typical top-down process to produce ultrafine/nano structured materials. ECAP has successfully been applied for a processing method of severe plastic deformation to achieve grain refinement of magnesium and to enhance its low ductility. However, difficult-to-work materials such as magnesium and titanium alloys were susceptible to shear localization during ECAP, leading to surface cracking. The front pressure, developed by Australian researchers, can impose hydrostatic pressure and increase the strain level in the material, preventing the surface defect on workpiece. In the present study, we investigated the deformation and fracture behavior of pure magnesium using experimental and numerical methods. The finite element method with different ductile fracture models was employed to simulate plastic deformation and fracture behavior of the workpiece.

Finite Element Simulation of Shearing Process Using the Element Kill Method (요소제거법을 이용한 전단가공 공적의 유한요소 시뮬레이션)

  • 고대철;김병민;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.229-234
    • /
    • 1994
  • The major objective of the present paper is to estabilish finite element simulation technique in order to further analyze the shearing process. For this the ductile fracture criterion and element kill method are used in the present work. It is postulated that a fracture initiation is based on the magnitude of local effective strain. The features of sheared surface are easily observed by the element kill method. The simulation results are compard with existing experimental results. It is found that the results of the present work are close agreement with the existing results.

  • PDF

The Development of a Non-Linear Finite Element Model for Ductile Fracture Analysis - For Mini-Computer - (연성파괴 해석을 위한 비선형 유한요소 모델의 개발 -소형 컴퓨터를 위한 -)

  • 정세희;조규종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.25-33
    • /
    • 1986
  • In this paper, the frontal method based elastic-plastic F.E.M. program for mini-computer was developed. Since, the executable source program size was restricted by the system core memory size on the mini-computer, the active variables were memorized by the element base and the nonactive varables were memorized to the external disc file. The active variables of the finally developed program were reduced enough to execute about 1,000 freedom finite element on the mini-computer on which available variables were restricted as 32,767 integers. A modified CT fracture test specimen was examined to test the developed program. The calculated results were compared with experimental results concerning on the crack tip plastic deformation zone. Recrystallization technique was adopted to visualize the intensive plastic deformation regions. The Von-Mises criterion based calculation results were well agreed with the experimental results in the intensive plastic region which was over than 2% offset strain. The F.E.M. results using the developed program were well agreed with the theoritical plastic boundary which was calculated by the stress intensity factor as r$_{p}$=(K$_{1}$$^{2}$/2.pi..sigma.$_{y}$$^{2}$).f(.theta.).).).

Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys (오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.

Strengthening of Non-ductile Reinforced Concrete (RC) frames with Expansive Joint Mortar and H-beam Frame (팽창형 접합부 모르타르와 H형강 프레임에 의한 비내진 상세를 갖는 철근콘크리트 골조의 내진보강)

  • Kim, Ji-Hyeon;Jang, Seok-Joon;Yun, Da-Ae;Kim, Dae-Young;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.127-135
    • /
    • 2019
  • The seismic performance of non-ductile reinforced concrete (RC) frame retrofitted with H-beam frame and cast expansive mortar into joint between existing RC frame and H-beam frame is investigated experimentally and analytically. RC frames considered in the study contain non-ductile reinforcement details of low-rise school building constructed in Korea before 1988. The tests were conducted on half-scale specimens simulating the lower frame assemblages of a typical school building. Two one-bay, one-story RC frames with and without retrofitting with H-beam frame and expansive joint mortar were tested to failure. Test and analysis results indicated that seismic strengthening using H-beam and expansive joint mortar significantly improved the lateral strength and stiffness of non-ductile RC frame without installing anchor bolts to fit H-beam frame into existing RC frame. The effectiveness of seismic strengthening technology proposed in the study for non-ductile RC frame was verified experimentally and analytically.