• Title/Summary/Keyword: ductile damage

Search Result 169, Processing Time 0.026 seconds

Ductile crack initiation evaluation in stiffened steel bridge piers under cyclic loading

  • Fujie, Wataru;Taguchi, Miki;Kang, Lan;Ge, Hanbin;Xu, Bin
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.463-480
    • /
    • 2020
  • Although detailed shell analysis is suitable to predict the ductile crack initiation life of steel members, such detailed method adds time expense and complexity. In order to simply predict the ductile crack initiation life of stiffened steel bridge piers, a total of 33 cases are simulated to carry out the parametric analyses. In the analysis, the effects of the width-to-thickness ratio, slenderness ratio, plate thickness and so on are considered. Both shell analyses and beam analyses about these 33 cases are conducted. The plastic strain and damage index obtained from shell and beam analyses are compared. The modified factor βs is determined based on the predicted results obtained from both shell and beam analyses in order to simulate the strain concentration at the base corner of the steel bridge piers. Finally, three experimental results are employed to verify the validity of the proposed method in this study.

Detection of the Cutting Tool's Damage by AE Signals for Austempered Ductile Iron (오스템퍼링 처리한 구상흑연주철의 AE신호에 의한 절삭공구 손상의 검출에관한 연구)

  • 전태옥;박흥식;이공영;예규현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.526-530
    • /
    • 1996
  • In this paper, three different types of commercially tools-P20, NC123K and ceramic-have been used to working austempered ductile iron(ADI). In the austempered condition the materials are hard, strong and difficult to machine. Thus, we selected a optimum tool material among three different types of used tools in machining of austempered ductile iron. It was used acoustic emission(AE) to know cutting characteristic for selected tool and flank wear land of the ceramic too. The obtained results are as follows; (1) The ceramic tool among three different types of tools is the best in machining austempered ductile iron. (2) In case of ceramic tool, the amplitude level of AE signal(AErms) is mainly affected bycutting speed in cutting speed in cutting condition and it is proportioned to cutting speed. (3) There have the relationship of direct proportion between the amplitude level of AE signal and flank wear land of the tool. (4) If it find the value of AErms at each cutting speed, the in-process detection to ceramic tool's wear is possible

  • PDF

Detection of the Cutting Tool's Damage by AE Signals for Austempered Ductile Iron (오스템퍼링 처리한 구상흑연주철의 AE신호에 의한 절삭공구 손상의 검출에 관한 연구)

  • Jun, T.O.;Park, H.S.;Ye, G.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.25-31
    • /
    • 1996
  • In this paper, three different types of commercial tools -P20, NC123K and ceramic- have been used to cut austempered ductile iron(ADI). In the austempered condition the materials are hard, strong and difficult to machine. Thus, we selected a optimum tool material among three different types of used tools in machining of austempered ductile iron. It was used acoustic emission (AE) to know cutting characteristic for selected tool and investigate characteristic of AE signal according to cutting condition and relationship between AE signal and flank wear land of the ceramic tool. The obtained results are as follows ; (1) The ceramic tool among three different types of tools is the best in machining austempered ductile iron. (2) In case of ceramic tool, the amplitude level of AE signal(AErms) is mainly affected by cutting condition and it is proportional to cutting speed. (3)There have been the relationship of direct proportion between the amplitude level of AE signal and flank wear land of the tool. (4) It was observed that the value of AErms was only affected by cutting speed. Therefore it is possible to in-process detec- tion of ceraic tool's wear in case the initial value of AErms at each cutting speed decided.

  • PDF

Seismic performance of non-ductile detailing RC frames: An experimental investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Pita, Panapa;Haryanto, Yanuar
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2020
  • Non-ductile detailing of Reinforced Concrete (RC) frames may lead to structural failure when the structure is subjected to earthquake response. These designs are generally encountered in older RC frames constructed prior to the introduction of the ductility aspect. The failure observed in the beam-column joints (BCJs) and accompanied by excessive column damage. This work examines the seismic performance and failure mode of non-ductile designed RC columns and exterior BCJs. The design was based on the actual building in Tainan City, Taiwan, that collapsed due to the 2016 Meinong earthquake. Hence, an experimental investigation using cyclic testing was performed on two columns and two BCJ specimens scaled down to 50%. The experiment resulted in a poor response in both specimens. Excessive cracks and their propagation due to the incursion of the lateral loads could be observed close to the top and bottom of the specimens. Joint shear failure appeared in the joints. The ductility of the member was below the desired value of 4. This is the minimum number required to survive an earthquake with a similar magnitude to that of El Centro. The evidence provides an understanding of the seismic failure of poorly detailed RC frame structures.

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report) (등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보))

  • 이종원
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

A low damage and ductile rocking timber wall with passive energy dissipation devices

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.127-143
    • /
    • 2015
  • In conventional seismic design, structures are assumed to be fixed at the base. To reduce the impact of earthquake loading, while at the same time providing an economically feasible structure, minor damage is tolerated in the form of controlled plastic hinging at predefined locations in the structure. Uplift is traditionally not permitted because of concerns that it would lead to collapse. However, observations of damage to structures that have been through major earthquakes reveal that partial and temporary uplift of structures can be beneficial in many cases. Allowing a structure to move as a rigid body is in fact one way to limit activated seismic forces that could lead to severe inelastic deformations. To further reduce the induced seismic energy, slip-friction connectors could be installed to act both as hold-downs resisting overturning and as contributors to structural damping. This paper reviews recent research on the concept, with a focus on timber shear walls. A novel approach used to achieve the desired sliding threshold in the slip-friction connectors is described. The wall uplifts when this threshold is reached, thereby imparting ductility to the structure. To resist base shear an innovative shear key was developed. Recent research confirms that the proposed system of timber wall, shear key, and slip-friction connectors, are feasible as a ductile and low-damage structural solution. Additional numerical studies explore the interaction between vertical load and slip-friction connector strength, and how this influences both the energy dissipation and self-centring capabilities of the rocking structure.

Rigid-Viscoplastic Finite Element Analysis of Piercing Process in Automatic Simulation of Multi-Stage Forging Processes (다단 단조공정의 자동 시뮬레이션 중 피어싱 공정의 강점소성 유한요소해석)

  • 이석원;최대영;전만수
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.216-221
    • /
    • 1999
  • In this paper, an application-oriented approach to piercing analysis in automatic forging simulation by the rigid-viscoplastic finite element mehtod is presented. In the presented approach, the accumulated damage is traced and the piercing instant is determined when the accumulated damage reaches the critical damage value. A method of obtaining the critical damage value by comparing the tensile test result with the analysis one is given. The presented approach is verified by experiments and applied to automatic simulation of a sequence of 6-stage forging processes.

  • PDF

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

Development of Model Parameter Prediction Equations for Simulating Load-deformation Response of Non-ductile RC Columns (비연성 RC 기둥의 하중-변형 응답 모사를 위한 모델 매개변수 제안)

  • Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Many reinforced concrete (RC) buildings constructed prior to 1980's lack important features guaranteeing ductile response under earthquake excitation. Structural components in such buildings, especially columns, do not satisfy the reinforcement details demanded by current seismic design codes. Columns with deficient reinforcement details may suffer significant damage when subjected to cyclic lateral loads. They can also experience rapid lateral strength degradation induced by shear failure. The objective of this study is to accurately simulate the load-deformation response of RC columns experiencing shear failure. In order to do so, model parameters are calibrated to the load-deformation response of 40 RC column specimens failed in shear. Multivariate stepwise regression analyses are conducted to develop the relationship between the model parameters and physical parameters of RC column specimens. It is shown that the proposed predictive equations successfully estimated the model parameters of RC column specimens with great accuracy. The proposed equations also showed better accuracy than the existing ones.

Collision Simulation of a Floating Offshore Wind Turbine Considering Ductile Fracture and Hydrodynamics Using Hydrodynamic Plug-in HydroQus

  • Dong Ho Yoon;Joonmo Choung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.111-121
    • /
    • 2023
  • This paper intends to introduce the applicability of HydroQus to a problem of a tanker collision against a semi-submersible type floating offshore wind turbine (FOWT). HydroQus is a plug-in based on potential flow theory that generates interactive hydroforces in a commercial Finite element analysis (FEA) code Abaqus/Explicit. Frequency response analyses were conducted for a 10MW capacity FOWT to obtain hydrostatic and hydrodynamic constants. The tanker was modeled with rigid elements, while elastic-plastic elements were used for the FOWT. Mooring chains were modeled to implement station keeping ability of the FOWT. Two types of fracture models were considered: constant failure strain model and combined failure strain model HC-LN model composed of Hosford-Coulomb (HC) model & localized necking (LN) model. The damage extents were evaluated by hydroforces and failure strain models. The largest equivalent plastic strain observed in the cases where both restoring force and radiation force were considered. Stress triaxiality and damage indicator analysis showed that the application of HC-LN model was suitable. It could be stated that applications of suitable failure strain model and hydrodynamics into the collision simulations were of importance.