• 제목/요약/키워드: ductile capacity

검색결과 293건 처리시간 0.03초

Experimental study on ductile crack initiation in compact section steel columns

  • Luo, Xiaoqun;Ge, Hanbin;Ohashi, Masatoshi
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.383-396
    • /
    • 2012
  • In order to develop a verification method for extremely low cycle fatigue (ELCF) of steel structures, the initiation mechanism of ductile cracks is investigated in the present study, which is the first step of brittle fracture, occurred in steel bridge piers with thick-walled sections. For this purpose, a total of six steel columns with small width-thickness ratios were tested under cyclic loading. It is found that ductile cracks occurred at the column base in all the specimens regardless of cyclic loading histories subjected. Moreover, strain history near the crack initiation location is illustrated and an index of energy dissipation amount is proposed to evaluate deformation capacity of structures.

고인성섬유 복합모르타르를 활용한 고강도 철근콘크리트 내부 보-기둥 접합부의 내진성능 개선 연구 (A Study on Improvement of Seismic Performance of High Strength Reinforced Concrete Interior Beam-Column Joints using High Ductile Fiber-Reinforced Mortar)

  • 하기주;홍건호
    • 콘크리트학회논문집
    • /
    • 제24권6호
    • /
    • pp.753-760
    • /
    • 2012
  • 이 연구에서는 고강도 철근콘크리트 내부 보-기둥 접합부의 시공성 및 내진성능을 개선하기 위하여 보-기둥 접합부 영역의 스터럽 및 띠철근 유무에 따라 고인성섬유 복합모르타르를 사용하여 내진성능을 평가하였다. 총 6개의 실험체를 제작하고 실험을 수행하여 내진성능을 평가하였으며, 이 연구의 실험 결과를 근거로 다음과 같은 결론을 얻었다. 기존 고강도 철근콘크리트 내부 보-기둥 접합부의 위험단면 영역을 고인성섬유 복합모르타르로 보강한 결과 재하 전 과정을 통하여 섬유의 가교역할로 인한 균열 분산효과로 인하여 균열 제어 효과가 커서 안정적인 파괴형태 및 내력을 나타내었다. 고강도 철근콘크리트 내부 보-기둥 접합부의 시공성 및 내진성능을 개선하기 위하여 고인성섬유 복합모르타르를 사용하여 보강한 실험체($IJNSP_{1.0}$, $IJNSP_{1.5}$, $IJNSP_{2.0}$)는 스터럽과 띠철근이 제거되었음에도 안정적인 이력거동을 나타내었고, 최대내력이 표준실험체의 96~102.8%, 에너지소산능력은 최대 0.99~1.11배로 표준실험체와 거의 비슷한 에너지소산능력을 나타내었다.

ECC (Engineered Cementitious Composite)의 연성이 전단벽의 사인장 거동에 미치는 영향 (Influence of ECC ductility on the diagonal tension behavior (shear capacity) of shear-wall panel)

  • 하기주;신종학;김윤용;김정수;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.321-324
    • /
    • 2005
  • This paper presents a preliminary study on the influence of material ductility on diagonal tension behavior of shear-wall panels. There have been a number of previous studies, which suggest that the use of high ductile material such as ECC (Engineered Cementitious Composite) significantly enhanced shear capacity of structural elements even without shear reinforcements involved. The present study emphasizes increased shear capacity of shear-wall panels by employing a unique strain-hardening ECC reinforced with poly(vinyl alcohol) (PVA) short random fibers. Normal concrete was adopted as the reference material. Experimental investigation was performed to assess the failure mode of shear-wall panels subjected to knife-edge loading. The results from experiments show that ECC panels exhibit a more ductile failure mode and higher shear capacity when compared to ordinary concrete panels. The superior ductility of ECC was clearly reflected by micro-crack development, suppressing the localized drastic fracture typically observed in concrete specimen. This enhanced structural performance indicates that the application of ECC for a in-filled frame panel can be effective in enhancing seismic resistance of an existing frame in service.

  • PDF

역량스펙트럼 및 에너지분석을 이용한 RC교각의 내진성능평가에 관한 연구 (Seismic Performance Evaluation of RC Bridge Piers using Capacity Spectrum and Energy Analysis)

  • 정영수;박종협
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.361-367
    • /
    • 2001
  • This research aims at evaluating the seismic performance of the R/C bridge piers, which were seismically designed in accordance with the seismic provision of limited ductile behavior of Eurocode 8. Pseudo dynamic test for six(6) circular RC bridge piers has been carried out so at to investigate their seismic performance subjected to experted artificial earthquake motions. The objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete bridge piers. Important test parameters are confinement steel ratio, input ground motion, etc. The seismic behavior of circular concrete piers under artificial ground motions has been evaluated through displacement ductility, energy analysis, capacity spectrum. It can be concluded that RC bridge piers designed in the seismic code of limited ductile behavior of Eurocode 8 have been determined to show good seismic performance even under expected artificial earthquakes in moderate seismicity region.

  • PDF

Effects of Matrix Ductility on the Shear Performance of Precast Reinforced HPFRCC Coupling Beams

  • Yun Hyun-Do;Kim Sun-Woo;Jeon Esther;Park Wan Shin
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.53-56
    • /
    • 2005
  • This paper investigates the effect of ductile deformation behavior of high performance hybrid fiber-reinforced cement composites (HPHFRCCs) on the shear behavior of coupling beams to lateral load reversals. The matrix ductility and the reinforcement layout were the main variables of the tests. Three short coupling beams with two different reinforcement arrangements and matrixes were tested. They were subjected to cyclic loading by a suitable experimental setup. All specimens were characterized by a shear span-depth ratio of 1.0. The reinforcement layouts consisted of a classical scheme and diagonal scheme without confining ties. The effects of matrix ductility on deflections, strains, crack widths, crack patterns, failure modes, and ultimate shear load of coupling beams have been examined. The combination of a ductile cementitious matrix and steel reinforcement is found to result in improved energy dissipation capacity, simplification of reinforcement details, and damage-tolerant inelastic deformation behavior. Test results showed that the HPFRCC coupling beams behaved better than normal reinforced concrete control beams. These results were produced by HPHFRCC's tensile deformation capacity, damage tolerance and tensile strength.

  • PDF

반복하중을 받는 철근콘크리트 보-기둥 접합부 연성능력에 대한 연구 (A study on the ductile capacity of Reinforced concrete beam-column joint subjected to cyclic load)

  • 박종욱;우재현;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.121-122
    • /
    • 2010
  • 본 연구는 내진설계에서 중요한 부분인 철근콘크리트 보-기둥 접합부를 관찰한다. 접합부에 인접한 보에서 발생한 소성힌지로 인한 부착 감소로 보 주인장철근 미끄러짐에 따른 접합부 내력 및 연성 변화를 보 주인장철근량을 변수로 하여 평가한다.

  • PDF

반복 하중을 받는 철근콘크리트 보의 전단 연성 (Shear Ductile Capacity of Reinforced Concrete Beams Subjected to Reversed Cyclic Loading)

  • 나현종;이정윤;황현복
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.285-288
    • /
    • 2006
  • This paper provides a method to predict the ductile capacity of reinforced concrete beams that fail in shear after flexural yielding. The proposed method takes into account shear strength deterioration in the plastic hinge region of RC beams. The shear contribution of the concrete in the plastic hinge region decreases after flexural yielding of the beam due to a decrease in the effective compressive strength of the concrete. To verify the shear strength and the corresponding ductility of the proposed method, 8 RC beams were tested under reversed cyclic loading.

  • PDF

건축물의 친환경 시공·해체를 위한 재료 분리형 GLT-Steel 보 개발 (Development of a Separable Glued-Laminated Timber (GLT)-Steel Beam for Eco-Friendly Construction and Dismantling of Buildings)

  • 방성준;오정권
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.23-24
    • /
    • 2023
  • In this study, an easily recyclable separable glued-laminated timber (GLT)-steel beam was developed, and a structural design method was presented. The GLT and steel were mechanically composited using self-tapping screws. The GLT-steel beam was designed to fail in the compression of GLT. The bending moment and load-carrying capacity of the GLT-steel beam were predicted based on composite beam theory and compared with experimental test data. As a result, the GLT-steel beam exhibited ductile behavior, and compression failure of GLT was observed. The screw connection showed no damage while the steel plate was extended. The load-carrying capacity of GLT after failure was similar to the load resistance predicted by the compressive strength of GLT and the tensile strength of steel. This indicates that the ductile behavior of the GLT-steel beam can be safely designed by the tensile strength (yield) of steel.

  • PDF

고로슬래그미분말을 혼입한 고인성섬유 복합모르타르를 이용한 철근콘크리트 보의 구조성능 평가 및 개선 (Improvement and Evaluation of Structural Performance of Reinforced Concrete Beam using High Ductile Fiber-Reinforced Mortar with Ground Granulated Blast Furnace Slag)

  • 하기주;이동렬
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.142-152
    • /
    • 2010
  • 본 연구는 표준실험체인 전단보강근이 없는 철근콘크리트 보(SSS)와 전단보강근이 있는 철근콘크리트 보(BSS), 성능개선실험체로는 전단보강근이 없는 철근콘크리트 보에 고로슬래그미분말을 혼입한 고인성섬유 복합모르타르를 타설한 실험체(SHF시리즈, SHFSC시리즈)로 총 11개의 실험체를 축소 제작하여 실험을 수행하였다. 실험을 통하여 얻어진 결과를 비교 분석하여 하중-변위, 파괴형태, 최대내력, 전단응력 등을 규명함으로써 구조성능의 개선정도를 평가하였다. 고로슬래그미분말을 혼입한 고인성섬유 복합모르타르를 이용한 철근콘크리트 보 실험체(SHF시리즈, SHFSC시리즈)의 경우 전단보강근이 없는 표준실험체(SSS)보다 전단응력은 각각 26%, 28%, 연성능력은 각각 5.27, 5.75배 증가하는 결과를 나타내었다. 또한, 충분한 연성적인 거동과 안정적인 휨인장 파괴를 나타내었다.

기존 골조의 내진성능 향상을 위한 철근콘크리트 현장타설 끼움벽의 보강성능 평가 (Evaluation on Seismic Performance of Existing Frame retrofitted with RC CIP Infill Walls)

  • 김선우;윤현도;김윤수;지상규
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.53-56
    • /
    • 2008
  • A reinforced concrete (RC) cast-in-place (CIP) infill wall retrofitting method may provide an improved seismic performance and economical efficiency for the non-ductile rahmen structures. In this study, four one story-one bay non-ductile frame were constructed and retrofitted with CIP infill wall to evaluate seismic performance of CIP infill wall-frame. From the test results, infill wall-frame exhibited a marked increase in shear strength compared to non-ductile RC frame specimen. But the ductility and story-drift at maximum load were decreased when shear strength of infill wall larger than that of existing RC frame. Therefore, it is confirmed that adequate reinforcement detail is required to assure sufficient seismic performance.

  • PDF