• Title/Summary/Keyword: duct thickness

Search Result 41, Processing Time 0.023 seconds

Designing of Safe Duct for Leisure Boat with Wing Section (익형 형상을 적용한 레저 선박용 안전 덕트 개발)

  • Sang-Jun Park;Jin-Wook Kim;Moon-Chan Kim;Woo-Seok Jin;Sa-Kyo Jung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.424-432
    • /
    • 2023
  • This study deals with the design of a safety device around a leisure boat propeller. The safety device is to be designed to minimize performance degradation attached to propulsors in coastal waters. These devices, important for preventing propeller accidents, negatively gives influence boat performance, especially at higher speeds. In order to minimize the negative effect, the accelerating ducts, normally used in ESDs (Energy Saving Devices) have been chosen as a safety device. The present study aims to design an optimal duct (minimizing negative effect) through the parametric study. Based on the Marine 19A nozzle, the nozzle's thickness and angle were varied to obtain the optimum parameter in the preliminary design by the computational fluid dynamics program Star-CCM+ Ver. 15.02. In the detailed design, a NACA 4-digit Airfoil shape resembling the Marine 19A by modification at the trailing edge was chosen and the optimum shape was chosen according to variation of camber, thickness, and incidence angle for optimization. The optimally designed duct shows a speed decrease of about 10% in the sea trial result, which is much smaller than the normal speed decrease of at least 30%. The present designing method can give wide applications to the leisure boat because the wake is almost the same due to using the outboard propulsor.

Experimental Study of Three-Dimensional Turbulent Flow in a $90^{\circ}C$ Rectanglar Cross Sectional Strongly Curved Duct (직사각형 단면을 갖는 $90^{\circ}C$ 급곡관 내의 3차원 난류유동에 관한 실험적 연구)

  • 맹주성;류명석;양시영;장용준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.262-273
    • /
    • 1991
  • In the present study, the steady, incompressible, isothermal, developing flow in a 90.deg. rectangular cross sectional strongly curved duct with aspect ratio 1:1.5 and Reynolds number of 9.4*10$^{4}$ has been investigated. Measurements of components of mean velocities, pressures, and corresponding components of the Reynolds stress tensor are obtained with a hot-wire anemometer and pitot tube. In general, flow in a curved duct is characterized by the secondary vortices which are driven mainly by centrifugal force-radial pressure gradient imbalance, and the stress field stabilizing effects near the convex wall and destablizing effects close to the concave wall. It was found that the secondary mean velocities attain values up to 39% of the bulk velocity and are largely responsible for the convections of Reynolds stress in the cross stream plane. Therefor upstream of the bend the Reynolds stress are low. Corresponding to the small boundary layer thickness. At successive planes, large values of Reynolds stress were observed near the concave surface and the side wall.

Conductive-Radiative Heat Transfer in an Infinite Square Duct with Dielectric Directional Property Wall (부도체 방향복사면이 있는 무한 정사각관의 전도-복사열전달)

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.543-552
    • /
    • 2003
  • The effects of a directionally emitting and reflecting dielectric surface on the wall heat flux and medium temperature distribution are studied. The system is an infinite square duct enclosing an absorbing and emitting medium. The emissivity and reflectivity of opaque and gray wall vary with direction. Combined effect of conductive and radiative heat transfer is analyzed using finite difference and the direct discrete-ordinates method. The parameters under study are conduction to radiation parameter, optical depth, refractive index ratio. The results with directional and diffuse properties deviate each other when the conduction to radiation parameter is less than around 0.01. The wall heat flux differs fur optical thickness less than around 0.1. However, the medium temperature profiles differ for optical thickness greater than around 1. Deviations from diffuse property calculations are larger for hot wall with directional property than cold wall with directional property. As n increases from 1.5, the trend changes are observed fur refractive index ratio about n=6.10

Effects of a Specularly Reflecting Wall in an Infinite Square Duct on Conductive-Radiative Heat Transfer (정사각형 계의 전도-복사열전달에서 정반사면의 영향)

  • Byeon, Gi-Hong;Han, Dong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1451-1458
    • /
    • 2001
  • The effects of a specularly reflecting surface on the wall heat flux and medium temperature distribution are studied. The system is an infinite square duct enclosing an absorbing and emitting medium. The walls are opaque, and black or gray. The walls emit diffusely but reflect diffusely or speculary. Heat is transferred by the combined effect of conduction and radiation. The radiative heat transfer is analyzed using direct discrete-ordinates method. The parameters under study are conduction, to radiation parameter, optical depth, wall emissivity, and reflection characteristics. The specular reflection and diffuse reflection show sizeable differences when the conduction to radiation parameter is less than around 0.01. The differences appear only either on the side wall heat flux or on the medium temperature profiles for the range of this study. The differences on the side wall heat flux are observed for optical thickness less than around 0.1 However the differences on the medium temperate profiles are found for optical thickness greater than around 1. The difference increase with increasing reflectance. The specular reflection increases the well heat flux gradient along the side wall.

An Experimental Study of Turbulent Uniform Shear Flow in a Nearly Two-Dimensional $90^{\circ}$ Curved Duct (I) - Mean Flow Field- (2차원 $90^{\circ}$ 곡관에서 균일전단류의 특성에 대한 실험적 연구 (1) -평균유동장-)

  • 임효재;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.834-845
    • /
    • 1995
  • An experimental study is made in a nearly two-dimensional 90.deg. curved duct to investigate the effects of interaction between streamline curvature and mean strain on turbulence. The initial shear at the entrance to the curved duct is varied by an upstream shear generator to produce five different shear conditions ; a uniform flow (UF), a positive weak shear (PW), a positive strong shear(PS), a negative weak shear (NW) and a negative strong shear(NS). With the mean field data of the case UF, variations of the momentum thickness, the shape factor and the skin friction over the convex(inner) surface and the concave (outer) surface are scrutinized quantitatively in-depth. It is found that, while the pressure loss due to curvature is insensitive to the inlet shear rates, the distributions of wall static pressure along both convex and concave surfaces are much influenced by the inlet shear rates.

Finite Element Analysis for Sound Propagation Characteristics in a Duct Lined with Poroelastic Foams (유한요소해석을 통한 탄성폼이 대어진 덕트내의 소음전파 특성 해석)

  • Lee, Seung-Yup;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.876-876
    • /
    • 2001
  • Axisymmetric finite element model is developed to determine sound propagation characteristics in a circular duct lined with a poroelastic foam. The foam and air models are derived based on the Biot's theory and the Helmholtz equation respectively and finally result in a quadratic eigenvalue problem in the wave number. Some cross sectional mode shapes are shown and sound attenuations and phase speeds of some acoustic modes are given. Those of fundamental modes are compared with those by forced response solutions and those from measurement results. The influence of lining thickness is also described on sound propagation characteristics.

  • PDF

Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement (회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향)

  • Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

Variation in Needle Morphology of Natural Populations of Abies nephrolepis Maxim. and A. Koreana Wilson in Korea (분비·구상나무 천연집단(天然集團)의 침엽특성(針葉特性) 변이(變異))

  • Song, Jeong-Ho;Lee, Jung-Joo;Lee, Kab-Yeon;Lee, Jae-Cheon;Kim, Young-Yul
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.387-392
    • /
    • 2007
  • Characteristics of needle morphology and anatomy were examined in 14 populations of Abies nephrolepis (Trautv.) Maxim. and A. koreana Wilson. Additionally we studied the classification index to distinguish between the species by the method of discriminant analysis. Characteristics of needle for A. nephrolepis could be distinguished from those for A. koreana by flatten arrangement, thin and long length for needle form, many stomata row, and marginal position of resin duct Nested ANOVA showed that there were statistically significant differences among populations as well as among individuals within populations in all 9 needle traits. For the needle indices such as needle thickness, number of stomata row, and the distance between resin duct and vascular for both species, variance components among populations were larger than those among individuals within populations. The characteristics that contributed most to the separation of A. nephrolepis and A. koreana according to the discriminant analysis using stepdisc procedures were needle index and thickness of needle, needle arrangement index, distance between resin duct and vascular, and number of stomata row.

Analysis of Abnormal Path Loss in Jeju Coastal Area Using Duct Map (덕트맵을 이용한 제주해안지역 이상 전파특성 분석)

  • Wang, Sungsik;Lim, Tae-Heung;Chong, Young Jun;Go, Minho;Park, Yong Bae;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.223-228
    • /
    • 2019
  • This study analyzes the propagation of the path losses between Jeju-do and Jin-do transceivers located in the coastal areas of Korea using the Advanced Refractive Prediction System(AREPS) simulation software based on the actual coastal weather database. The simulated data is used to construct a duct map according to the altitude and thickness of the trap. The duct map is then divided into several regions depending on the altitude parameters of Tx and Rx, which can be used to effectively estimate the abnormal wave propagation characteristics due to duct occurrence in the Jeju-do coastal area. To validate the proposed duct map, two representative atmospheric index samples of the weather database in May 2018 are selected, and the simulated path losses using these atmospheric indices are compared with the measured data. The simulated path losses for abnormal conditions at the Rx point at Jeju-do are 167.7 dB and 192.3 dB, respectively, which are in good agreement with the measured data of 164.4 dB and 194.9 dB, respectively.

Correlation between nasal mucosal thickness around the lacrimal sac fossa and surgical outcomes in endonasal dacryocystorhinostomy

  • Yoo, Jae Ho;Kim, Chang Zoo;Nam, Ki Yup;Lee, Seung Uk;Lee, Jae Ho;Lee, Sang Joon
    • Kosin Medical Journal
    • /
    • v.33 no.3
    • /
    • pp.358-368
    • /
    • 2018
  • Objectives: To identify the relationship between surgical success rate and preoperative nasal mucosal thickness around the lacrimal sac fossa, as measured using computed tomography. Methods: We reviewed 33 eyes from 27 patients who underwent endoscopic dacryocystorhinostomy after diagnosis of primary nasolacrimal duct obstruction and who were followed-up with for at least six months between 2011 and 2014. We measured preoperative nasal mucosal thickness around the bony lacrimal sac fossa using computed tomography and analyzed patient measurements after classifying them into three groups: the successfully operated group, the failed operation group, and the non-operated group. Results: Surgery failed in six of the 33 eyes because of a granuloma at the osteotomy site and synechial formation of the nasal mucosa. The failed-surgery group showed a clinically significantly greater decrease in nasal mucosal thickness at the rearward lacrimal sac fossa compared with the successful-surgery group. However, nasal mucosal thickness of fellow eyes (i.e., non-operated eyes) was not significantly different between the two groups, and the location of the uncinate process did not appear to influence mucosal thickness. In the failed group, posteriorly located mucosal thickness of operated eye fossa was thinner than that of the non-operated eyes, but not significantly so. Conclusions: Our results from this quantitative anatomical study suggest that nasal mucosal thickness is a predictor of endoscopic dacryocystorhinostomy results.