• Title/Summary/Keyword: dual-poly gate

Search Result 12, Processing Time 0.022 seconds

Novel Dual-Gate Poly-Si TFT Employing L-Shaped Gate (L-모양 gate를 적용한 새로운 dual-gate poly-Si TFT)

  • Park, Sang-Geun;Lee, Hye-Jin;Shin, Hee-Sun;Lee, Won-Kyu;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2031-2033
    • /
    • 2005
  • poly-Si TFT의 kink 전류를 억제하는 L-shaped dual-gate TFT 구조를 제안하고 이를 제작하였다. 제안된 소자는 채널의 그레인 방향을 일정하게 성장시키는 SLS나 CW laser 결정화 방법을 사용한다. L자 모양의 게이트 구조를 사용하여 서고 다른 전계효과 이동도를 갖는 두 개의 sub-TFT를 구현할 수 있으며, 이러한 sub-TFT간의 특성차이가 kink 전류를 억제시킨다. 직접 제작한 L-shaped dual-gate 구조의 소자가 poly-Si TFT의 kink 전류를 억제하고, 전류포화 영역에서 전류량을 고정시킴으로써 신뢰성이 향상됨을 확인하였다.

  • PDF

Characteristics of CMOS Transistor using Dual Poly-metal(W/WNx/Poly-Si) Gate Electrode (쌍극 폴리-금속 게이트를 적용한 CMOS 트랜지스터의 특성)

  • 장성근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.233-237
    • /
    • 2002
  • A giga-bit DRAM(dynamic random access memory) technology with W/WNx/poly-Si dual gate electrode is presented in 7his papers. We fabricated $0.16\mu\textrm{m}$ CMOS using this technology and succeeded in suppressing short-channel effects. The saturation current of nMOS and surface-channel pMOS(SC-pMOS) with a $0.16\mu\textrm{m}$ gate was observed 330 $\mu\A/\mu\textrm{m}$ and 100 $\mu\A/\mu\textrm{m}$ respectively. The lower salutation current of SC-pMOS is due to the p-doped poly gate depletion. SC-pMOS shows good DIBL(dram-induced harrier lowering) and sub-threshold characteristics, and there was no boron penetration.

Impact of DPN on Deep Nano-technology Device Employing Dual Poly Gate (Nano-technology에 도입된 Dual Poly Gate에서의 DPN 공정 연구)

  • Kim, Chang-Jib;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.296-299
    • /
    • 2008
  • The effects of radio frequency (RF) source power for decoupled plasma nitridation (DPN) process on the electrical properties and Fowler-Nordheim (FN) stress immunity of the oxynitride gate dielectrics for deep nano-technology devices has been investigated. With increase of RF source power, the threshold voltage (Vth) of a NMOS transistor(TR) decreased and that of a PMOS transistor increased, indicating that the increase of nitrogen incorporation in the oxynitride layer due to higher RF source power induced more positive fixed charges. The improved off-current characteristics and wafer uniformity of PMOS Vth were observed with higher RF source power. FN stress immunity, however, has been degenerated with increasing RF source power, which was attributed to the increased trap sites in the oxynitride layer. With the experimental results, we could optimize the DPN process minimizing the power consumption of a device and satisfying the gate oxide reliability.

Fluorine Effects on CMOS Transistors in WSix-Dual Poly Gate Structure (텅스텐 실리사이드 듀얼 폴리게이트 구조에서 CMOS 트랜지스터에 미치는 플로린 효과)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun;Choi, Kang-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.177-184
    • /
    • 2014
  • In chemical vapor deposition(CVD) tungsten silicide(WSix) dual poly gate(DPG) scheme, we observed the fluorine effects on gate oxide using the electrical and physical measurements. It is found that in fluorine-rich WSix NMOS transistors, the gate thickness decreases as gate length is reduced, and it intensifies the roll-off properties of transistor. This is because the fluorine diffuses laterally from WSix to the gate sidewall oxide in addition to its vertical diffusion to the gate oxide during gate re-oxidation process. When the channel length is very small, the gate oxide thickness is further reduced due to a relative increase of the lateral diffusion than the vertical diffusion. In PMOS transistors, it is observed that boron of background dopoing in $p^+$ poly retards fluorine diffusion into the gate oxide. Thus, it is suppressed the fluorine effects on gate oxide thickness with the channel length dependency.

Electrical Characteristics and Leakage Current Mechanism of High Temperature Poly-Si Thin Film Transistors (고온 다결정 실리콘 박막트랜지스터의 전기적 특성과 누설전류 특성)

  • 이현중;이경택;박세근;박우상;김형준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.918-923
    • /
    • 1998
  • Poly-silicon thin film transistors were fabricated on quartz substrates by high temperature processes. Electrical characteristics were measured and compared for 3 transistor structures of Standard Inverted Gate(SIG), Lightly Doped Drain(LDD), and Dual Gate(DG). Leakage currents of DG and LDD TFT's were smaller that od SIG transistor, while ON-current of LDD transistor is much smaller than that of SIG and DG transistors. Temperature dependence of the leakage currents showed that SIG and DG TFT's had thermal generation current at small drian bias and Frenkel-Poole emission current at hight gate and drain biases, respectively. In case of LDD transistor, thermal generation was the dominant mechanism of leakage current at all bias conditions. It was found that the leakage current was closely related to the reduction of the electric field in the drain depletion region.

  • PDF

Improvement of Boron Penetration and Reverse Short Channel Effect in 130nm W/WNx/Poly-Si Dual Gate PMOSEET for High Performance Embedded DRAM

  • Cho, In-Wook;Lee, Jae-Sun;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.193-196
    • /
    • 2002
  • This paper presents the improvement of the boron penetration and the reverse short channel effect (RSCE) in the 130nm W/WNx/Poly-Si dual gate PMOSFET for a high performance embedded DRAM. In order to suppress the boron penetration, we studied a range in the process heat budget. It has shown that the process heat budget reduction results in suppression of the boron penetration. To suppress the RSCE, we experimented with the halo (large tilt implantation of the same type of impurities as those in the device well) implant condition near the source/drain. It has shown that the low angle of the halo implant results in the suppression of the RSCE. The experiment was supported from two-dimensional(2-D) simulation, TSUPREM4 and MEDICI.

  • PDF

Design Consideration of Bulk FinFETs with Locally-Separated-Channel Structures for Sub-50 nm DRAM Cell Transistors

  • Jung, Han-A-Reum;Park, Ki-Heung;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.156-163
    • /
    • 2008
  • We proposed a new $p^+/n^+$ gate locally-separated-channel (LSC) bulk FinFET which has vertically formed oxide region in the center of fin body, and device characteristics were optimized and compared with that of normal channel (NC) FinFET. Key device characteristics were investigated by changing length of $n^+$ poly-Si gate ($L_s$), the material filling the trench, and the width and length of the trench at a given gate length ($L_g$). Using 3-dimensional simulations, we confirmed that short-channel effects were properly suppressed although the fin width was the same as that of NC device. The LSC device having the trench non-overlapped with the source/drain diffusion region showed excellent $I_{off}$ suitable for sub-50 nm DRAM cell transistors. Design of the LSC devices were performed to get reasonable $L_s/L_g$ and channel fin width ($W_{cfin}$) at given $L_gs$ of 30 nm, 40 nm, and 50 nm.

Impact of Plasma Induced Degradation on Low Temperature Poly-Si CMOS TFTs during Etching Process

  • Chang, Jiun-Jye;Chen, Chih-Chiang;Chuang, Ching-Sang;Yeh, Yung-Hui
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.519-522
    • /
    • 2002
  • In this paper, we analyze the impact of plasma etching process induced device degradation on low temperature poly-Si TFTs. The results indicate the relationship between device degradation and PPID effect during plasma fabrication. The dual-gate structure, which is used to suppress leakage current, is also discussed in this research.

  • PDF

The Research of FN Stress Property Degradation According to S-RCAT Structure (S-RCAT (Spherical Recess Cell Allay Transistor) 구조에 따른 FN Stress 특성 열화에 관한 연구)

  • Lee, Dong-In;Lee, Sung-Young;Roh, Yong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1614-1618
    • /
    • 2007
  • We have demonstrated the experimental results to obtain the immunity of FN (Fowler Nordheim) stress for S-RCAT (Spherical-Recess Cell Array Transistor) which has been employed to meet the requirements of data retention time and propagation delay time for sub-100-nm mobile DRAM (Dynamic Random Access Memory). Despite of the same S-RCAT structure, the immunity of FN stress of S-RCAT depends on the process condition of gate oxidation. The S-RCAT using DPN (decoupled plasma nitridation) process showed the different degradation of device properties after FN stress. This paper gives the mechanism of FN-stress degradation of S-RCAT and introduces the improved process to suppress the FN-stress degradation of mobile DRAM.

Nonvolatile Ferroelectric Memory Devices Based on Black Phosphorus Nanosheet Field-Effect Transistors

  • Lee, Hyo-Seon;Lee, Yun-Jae;Ham, So-Ra;Lee, Yeong-Taek;Hwang, Do-Gyeong;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.281.2-281.2
    • /
    • 2016
  • Two-dimensional van der Waals (2D vdWs) materials have been extensively studied for future electronics and materials sciences due to their unique properties. Among them, black phosphorous (BP) has shown infinite potential for various device applications because of its high mobility and direct narrow band gap (~0.3 eV). In this work, we demonstrate a few-nm thick BP-based nonvolatile memory devices with an well-known poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] ferroelectric polymer gate insulator. Our BP ferroelectric memory devices show the highest linear mobility value of $1159cm^2/Vs$ with a $10^3$ on/off current ratio in our knowledge. Moreover, we successfully fabricate the ferroelectric complementary metal-oxide-semiconductor (CMOS) memory inverter circuits, combined with an n-type $MoS_2$ nanosheet transistor. Our memory CMOS inverter circuits show clear memory properties with a high output voltage memory efficiency of 95%. We thus conclude that the results of our ferroelectric memory devices exhibit promising perspectives for the future of 2D nanoelectronics and material science. More and advanced details will be discussed in the meeting.

  • PDF