• 제목/요약/키워드: dual-phase steel

검색결과 126건 처리시간 0.025초

複合組織鋼의 第2相 硬度變化가 腐蝕疲勞 크랙傳播에 미치는 影響 (The Influence on the Corrosion Fatigue Crack Propagation in Changing of the Second Phase Hardness of Dual Phase Steel)

  • 오세욱;김웅집
    • Journal of Welding and Joining
    • /
    • 제11권2호
    • /
    • pp.42-52
    • /
    • 1993
  • The corrosion fatigue fracture behaviour of dual phase steel was investigated in 3% NaCl solution at 302MPa and 137MPa. Fatigue test was conducted by cantilever type of self-made rotary bending fatigue testing machine. The fatigue strength increased with increasing the hardness of 2nd phase. Corrosion pit originated at the boundary of the 2nd phase. The size and number of corrosion pits were influenced by the 2nd phase hardness, and pits remained constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of .DELTA. K and da/dN has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the greater the corrosion fatigue life becomes. Corrosion fatigue fracture behaviour was primarily effected by mechanical factor in case of high stress(302MPa), but by electro-chemical reaction in a lower stress(137MPa). As stress level got lower and hardness of the 2nd phase got higher, the roughness of fracture surface increased.

  • PDF

복합조직강 의 균열선단 에서의 파괴저항 에 관한 연구 (A Study on the Fracture Resistance at the Crack Tip in Dual Phase Steel)

  • 김정규;오재민;김형채
    • 대한기계학회논문집
    • /
    • 제9권5호
    • /
    • pp.564-571
    • /
    • 1985
  • 본 논문에서는 미시조직인자를 변화시킨 마르텐사이트-페라이트 복합조직강을 준비하여 균열선단 및 안정영역의 파괴양상과 파괴저항과의 관계를 검토하였다.

수소주입시킨 680MPa DP강의 나노인덴터 시험 (Nanoindenter Test of 680MPa Dual Phase Steel Charged with Hydrogen)

  • 최종운;박재우;강계명
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.33-38
    • /
    • 2014
  • Nanoindentater tests were conducted to conducted nanoindentation microhardness of the individual phase of ferrite and martensite of 680MPa dual-phase (DP) steel charged with hydrogen. Hydrogen was charged by electrochemical method with current densities of 150, $200mA/cm^2$ for charging times of 5, 10, 25, 50 hours, respectively. Nanoindenter test results showed that the nanoindentation microhardnesses of ferrite phase of DP steel were varied from min. 1.58 GPa to max. 2.82 GPa, and the nanoindentation microhardnesses of martensite phase varied from min. 3.19 GPa to max. 5.16 GPa with the variation of hydrogen charging conditions. It was observed that the variations of the nanoindention microhardnesses of martenstie phase were higher than those of ferrite phases. It was thought that martensite phase in the 680MPa DP steel was more sensitive than ferrite phase to hydrogen embrittlement.

저탄소 Dual Phase강의 가공시효에 미치는 탄소유효확산 및 전위분포의 영향 (Effects of Dislocation Distribution and Carbon Effective Diffusion on Strain Aging Behavior of a Low Carbon Dual Phase Steel)

  • 유상협;정기채;홍기하;박경태
    • 소성∙가공
    • /
    • 제30권5호
    • /
    • pp.226-235
    • /
    • 2021
  • The strain aging behavior of a low carbon dual phase steel was examined in two conditions: representing room temperature strain aging (100 ℃ × 1 hr after 7.5 % prestrain) and bake hardening process (170 ℃ × 20 min after 2 % prestrain), basing on carbon effective diffusion and dislocation distribution. The first principle calculations revealed that (Mn or Cr)-vacancy-C complexes exhibit the strongest attractive interaction compared to other complexes, therefore, act as strong trapping sites for carbon. For room temperature strain aging condition, the carbon effective diffusion distance is smaller than the dislocation distance in the high dislocation density region near ferrite/martensite interfaces as well as ferrite interior considering the carbon trapping effect of the (Mn or Cr)-vacancy-C complexes, implying ineffective Cottrell atmosphere formation. Under bake hardening condition, the carbon effective diffusion distance is larger compared to the dislocation distance in both regions. Therefore, formation of the Cottrell atmosphere is relatively easy resulting in to a relatively large increase in yield strength under bake hardening condition.

EFFECTS OF HEAT TREATMENTS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL PHASE ODS STEELS FOR HIGH TEMPERATURE STRENGTH

  • Noh, Sanghoon;Choi, Byoung-Kwon;Han, Chang-Hee;Kang, Suk Hoon;Jang, Jinsung;Jeong, Yong-Hwan;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.821-826
    • /
    • 2013
  • In the present study, the effects of various heat treatments on the microstructure and mechanical properties of dual phase ODS steels were investigated to enhance the high strength at elevated temperature. Dual phase ODS steels have been designed by the control of ferrite and austenite formers, i.e., Cr, W and Ni, C in Fe-based alloys. The ODS steels were fabricated by mechanical alloying and a hot isostatic pressing process. Heat treatments, including hot rolling-tempering and normalizing-tempering with air- and furnace-cooling, were carefully carried out. It was revealed that the grain size and oxide distributions of the ODS steels can be changed by heat treatment, which significantly affected the strengths at elevated temperature. Therefore, the high temperature strength of dual phase ODS steel can be enhanced by a proper heat treatment process with a good combination of ferrite grains, nano-oxide particles, and grain boundary sliding.

신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구 (Study on the Cold Formability of Drawn Non-heat Treated Steels)

  • 박경수;박용규;이덕락;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.307-310
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to investigate their deformation resistance and forming limit. Deformation resistance was estimated by calculating the deformation energy and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strain was the highest in the ultra low carbon bainitic steel.

  • PDF

복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향 (The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation)

  • 오세욱;김웅집
    • 한국해양공학회지
    • /
    • 제5권2호
    • /
    • pp.58-66
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

  • PDF

저탄소 2상조직강의 열처리공정 조건에 따른 기계적특성 변화

  • 김훈동;박진성;문만빈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • Recently high strength steel sheets with high formability for automotive parts have been being developed to meet the demands for passenger safety and weight reduction of car body. Among these high strength steels, dual-phase steels are regarded as one of the attractive steels due to their excellent mechanical properties including high strength and ductility. However, to be successfully applied to automotive parts they should be corrosion resistant enough to satisfy the required quality of car maker. This also requires their feasibility for galvannealed production including hot dip galvanizability. In this study has been placed on understanding the effects of heat-treatment(austenizing and isothermal treatment) on the microstructures and mechanical properties of a 0.06C-0.03Si-2.0Mn high strength steel for cold forming. The microstructure and phase distribution were examined with eth aids of SEM, EBSD, TEM etc.. Through the study the production of 590MPa grade DP GA steels with good formability and galvaniability were shown to be possible.

  • PDF

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.

3차원 미세조직에 기반한 잔류응력 하의 이상 조직강의 소성변형률비 예측 (Prediction of the Plastic Strain Ratio Evolution of a Dual-phase Steel)

  • 하진진;이진우;이명규;;김지훈
    • 소성∙가공
    • /
    • 제24권6호
    • /
    • pp.395-399
    • /
    • 2015
  • A microstructure-based finite element simulation was conducted to predict the plastic strain ratio (R-value) of a dual-phase (DP) steel. The representative volume elements (RVEs) concept was adopted for the image-based FE modeling and a 3D model was constructed using sequential 2D images. Each phase was considered with the von-Mises yield criterion and the Swift model. The Swift parameters were defined by the empirical equations based on the chemical composition. The developed model was applied to analyze the effect of residual stress on the R-value and stress distribution. In order to consider the residual stress development after cold rolling, 10 % compression was applied in the thickness direction and unloaded before the tensile stress was applied in the rolling direction. The results showed a reasonable prediction for the R-value evolution: a sharp increase at small strains was well described and a transition followed in the downward direction. The R-value evolution was analyzed using the stress distribution change on the π-plane