• Title/Summary/Keyword: dual dipole antenna

Search Result 46, Processing Time 0.026 seconds

CPW-fed to CPS Dipole Antenna of Microstrip Tapered Balun with Triangular Loop Director

  • Lee, Hyeonjin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1365-1368
    • /
    • 2014
  • A CPW-fed to CPS dipole antenna of triangular loop director by microstrip tapered balun is proposed for dual and wide band operations, in this paper. The proposed antenna is consisted of a CPW-fed to CPS transform, microstrip tapered balun element, CPS dipole driver and triangular loop director. A dual and wide bandwidth of the proposed dipole antenna is realized by introducing the triangular loop director and taper matching element. The operated frequency bandwidth is 1GHz (2.14~3.14 GHz) and 1.9 GHz (4.6~6.5 GHz) to return loss criterion of less than 10 dB. The measured return loss of the proposed antenna showed good results of the dual and wide band operating frequency and the radiation pattern. The proposed antenna is able to support WLAN wireless communications applications.

Design of Dual Band Log-Periodic Dipole Antennas for the Cellular/IMT-2000 Band (Cellular/IMT-2000 공용 이중밴드 대수주기 다이폴 안테나 설계)

  • 최학근;오종대;김명철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1216-1224
    • /
    • 2003
  • In this paper Dual Band Log-Periodic Dipole Antenna(DLPDA), which can be used at the Cellular/IMT-2000 band, is proposed. The proposed antenna is composed of 2 of Log-Periodic Dipole Antenna(LPDA) and parasitic elements. To investigate the reliability of the proposed antenna, DLPDA is designed at the cellular/IMT-2000 band and analyzed by using the method of moment, Numerical results are compared with measured results. It is shown that although the antenna length is 70 cm, its radiation characteristics satisfied the design goals of gain, VSWR and beamwidth at the Cellular/IMT-2000 band. From these results, the proposed DLPDA is confirmed as the dual band antenna which can be used at the cellular/IMT-2000 band.

Improved Impedance Matching of Dual-Frequency Microstrip Printed-Dipole Antenna with Conductor Back

  • Tangjitjesada, M.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1668-1671
    • /
    • 2003
  • A novel dual-frequency microstrip printed-dipole antenna operating at 5 GHz and 10 GHz is presented. This antenna is designed for wireless and mobile communication. The balance step coplanar strip is used to be a transmission line at the center of dipole with matching impedance at 50 ohm. Using the conductor strip align on the other side of antenna and adjust the width of step coplanar strip line to improved input impedance matching. By modification for matching impedance of dual frequency antenna are not affected to the radiation patterns. The Finite Difference Time Domain (FDTD) technique is applying to analyze the basic characteristic properties such as $S_{11}$ , input impedance , VSWR and radiation patterns. And these parameters are discussed. The analyze problem space are $51{\times}197{\times}175$ cells and cell dimension are ${\Delta}x=0.3\;mm$ and ${\Delta}y={\Delta}z=0.15\;mm$.

  • PDF

Dual Band Dipole Antenna with Tapered Microstrip Balun for WLAN Access Point (무선랜 AP(Access Point)용 테이퍼형 마이크로스립 발룬 구조 이중대역 다이폴 안테나)

  • Kim, Joung-Myoun;Kim, Jeong-Li;Yun, Je-Hoon;Kim, Nam
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.219-220
    • /
    • 2006
  • In this paper, we designed and implemented the Dual Band Dipole Antenna with Tapered Microstrip Balun for WLAN Access Point. Two dipole antennas with different resonant frequency and the antenna structure combined additional line were implemented for dual band performance. In order to feed the balun current, the tapered microstrip balun was used. Produced the Dual Band Antenna shows a special quality. The quality is that all VSWR is less than 1.5 in the 2.4GHz and 5GHz frequency bands in 802.11 standards, and it profits not less than 1.7dBi having typical Dipole Antenna pattern the very "a form of 8"pattern and Omni-directional pattern.

  • PDF

Design for Dual Polarization Antenna Element using Electromagnetic-Coupled Dipole (전자결합 다이폴을 이용한 편파공용 안테나 소자의 설계)

  • ;;;;;;Hiroyuki Arai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.128-131
    • /
    • 2000
  • This paper describes design for dual-linear polarization antenna using EMC(electromagnetic-coupled) dipole. EMC dipole has a simple element structure and it is fed by microstrip line. Vortical and horizontal polarization are determined by structure of dipole fed by microstrip line. FDTD Method is used for an analysis of antenna element. Length, width, height and offset of dipole are designed for 1-element antenna. Resonant length of diploe differs from the calculated value by a formula because of coupling effect of dipole and feed line. Radiation Power is controlled by the offset of dipole. In prectical fabrication of antenna array, a constant height of dipoles is required. Therefore, the teflon plate with height of 0.8 mm is considered in antenna element design for the vertical polarization.

  • PDF

A Planar Yagi-Uda Dipole Antenna with Dual Tapered Balun by CPW-fed to CPS (CPW-fed to CPS 전이 급전에 의한 이중 테이퍼드 발룬을 포함한 평판형 Yagi-Uda 다이폴 안테나 설계)

  • Lee, Hyeonjin;Kim, Tea-Hong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, we proposed a broadband planar Yagi-Uda dipole antenna with dual tapered balance and unblance (balun) by CPW-fed to CPS. This antenna consisted of driver, three directors, dual tapered balun and CPS-fed to CPS. The fed structure of CPW-fed to CPS had a benefit points much simpler than other planar Yagi-Uda antennas and provided design more flexibility in arranging the reflector. The proposed antenna is introduced dual tapered balun to improve the impedance matching. It balun is inserted between the CPW-ground and the CPS. The proposed antenna is exhibited the bandwidth of 4.78 GHz (1.94~6.72 GHz) (S11 < -10 dB) and the gain of 4.9~7.2 dBi within that bandwidth. This antenna will applicate wireless communication.

Substrate Integrated Waveguide Power Divider Fed Dual-Dipole Array Antenna

  • Yu, Chen;Hong, Wei;Kuai, Zhenqi
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.171-174
    • /
    • 2010
  • In the paper, a printed dual-dipole array antenna is presented. A 4-way planar SIW power divider is adopted for feeding the array antenna. The dual-dipole is adopted as radiation elements which greatly improves the impedance band. The measured bandwidth larger than 31 % for VSWR$\leq$1.5 operating near 14 GHz is achieved and in agreement with the simulated results. The radiation E-plane and H-plane radiation pattern is presented in the paper. The radiation gain is also presented in the paper.

A study on the Properties of RF-DC Conversion Efficiency for the Dual-Polarization (이중편파 정류안테나의 RF-DC 변환효율 특성 분석)

  • 유동기;박양하;김관호;이영철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.435-442
    • /
    • 2000
  • In this paper, we analyzed RF-DC conversion efficiency for the dual -polarization rectenna and the antenna position changing. Dual-Polarization rectenna consist of a two major parts, receiving antenna and rectifying circuits. We made dual-polarization 2.45GHz rectenna using the two dipole antennas and patch antenna. Rectifying circuit is consisted by a Schottky-Barrier diode with a large forward current and reverse breakdown voltage. The results of RF-DC conversion efficiency for the each of designed dual-polarization rectenna has 69.1% with 360$\Omega$(dipole type) and 75.4% with 340$\Omega$(patch type ) optimum load resistor. When the each of dual-polarization rectenna has optimal load resistor, it's conversion efficiency shows of $\pm$20% in dipole type and $\pm$5 in patch type at 0~180。position.

  • PDF

Design of a broadband dual dipole antenna for indoor digital TV reception (실내 디지털 TV수신용 광대역 이중 다이폴 안테나 설계)

  • Lee, Jong-Ig;Han, Dae-Hee;Eun, Jang-Soo;Yang, Myung-Gyu;Yeo, Junho;Kim, Gun-Kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.63-64
    • /
    • 2013
  • In this paper, a design method for a dual dipole antenna for an operation in the frequency band of 470-806 MHz for indoor digital TV (DTV) is studied. The proposed antenna is composed of two planar dipoles connected by parallel strip line, and the antenna is fed by a microstrip line. By employing different lengths of dipoles, a broadband characteristics is obtained, and the antenna is size-reduced by bending both ends of the longer dipole. The effects of each parameters on the antenna performance are examined by simulation, and the parameters are optimized for the DTV use. A prototype antenna with optimized parameters for the indoor DTV use is fabricated on an FR4 substrate and tested experimentally. The experimental results show that the frequency band for a VSWR < 2 ranges 458-864 MHz (61.4%, bandwidth 406 MHz, 1.89:1), and it corresponds fairly well with the simulated band 448-868 MHz (63.8%, bandwidth 420 MHz, 1.94:1).

  • PDF

A Study on 8 × 4 Dual-Polarized Array Antenna for X-Band Using LTCC-Based ME Dipole Antenna Structure (LTCC 기반 ME Dipole 안테나 구조를 활용한 X-Band 용 8 × 4 이중편파 배열안테나에 관한 연구)

  • Jung, Jae-Woong;Seo, Deokjin;Ryu, Jong-In
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.25-32
    • /
    • 2021
  • In this paper, the Magneto-Electric(ME) dipole array antenna with dual-polarization in the X-Band is proposed and it is implemented and measured. The proposed array antenna is composed of 32 single ME dipole antenna and a Teflon PCB. 1 × 1 ME dipole antenna is implemented dual-polarization by radiating vertical polarization and horizontal polarization from two pairs of radiators. 2-port feeding structures are realized by lamination process using LTCC. And, each port independently feeds the radiator through a Γ-shaped feeding strip with isolation between ports. The Teflon PCB used in the antenna array has a 4-layer structure, and 2-port is fed through the top and bottom layers. The λg/4 transformer is applied to the transmission line of the Teflon PCB for impedance matching of the arrayed antenna and the Teflon PCB, and the optimal parameters are obtained through simulation. The measured maximum antenna gains of port 1 was 18.2 dBi, Cross-pol was 1.0 dBi. And the measured maximum antenna gains of port 1 was 18.1 dBi, Cross-pol was 3.2 dBi.