• Title/Summary/Keyword: dry transfer

Search Result 323, Processing Time 0.021 seconds

Comparison of Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions

  • Kim Nae-Hyun;Sin Tae-Ryong;Lee Eung-Ryul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.128-137
    • /
    • 2005
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately $30\%$ lower than the dry surface values. For the pressure drop, the wet surface yielded approximately $30\%$ higher values compared with the dry surface counterpart. Data were compared with existing correlations.

Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions (평판휜 열 교환기의 건표면, 습표면 열전달 및 압력손실에 관한 연구)

  • 민창근;조진표;오왕규;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.218-229
    • /
    • 2004
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately 30% lower than the dry surface values. For the pressure drop, the wet surface yielded approximately 30% higher values compared with the dry surface counterpart. Data were compared with existing correlations.

Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells (ZnO 나노 분말 코팅 기반 건식전사 그래핀 전극 제작 및 유기태양전지 응용)

  • Jo, Yeongsu;Woo, Chae Young;Hong, Soon Kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.305-310
    • /
    • 2020
  • In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.

Surface Energy of Graphene Transferred by Wet and Dry Transfer Methods (전사 방법에 따른 그래핀의 표면 에너지 변화)

  • Yoon, Min-Ah;Kim, Chan;Won, Sejeong;Jung, Hyun-June;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Graphene is a fascinating material for fabricating flexible and transparent devices owing to its thickness and mechanical properties. To utilize graphene as a core material for devices, the transfer process of graphene is an inevitable step. The transfer process can be classified into wet and dry methods depending on the surrounding environment. The adhesion between graphene and a target substrate determines the success or failure of the transfer process. As the surface energy of graphene is an important parameter that provides adhesion, it is useful to estimate the surface energy to understand the mechanisms of the transfer process. However, the exact surface energy of graphene is still disputed because the wetting transparency of graphene depends on the polarity of the liquid and target substrate. Previously reported results use graphene transferred by the wet method. However, there are few reports on the surface energy of graphene transferred by the dry method. In this study, the surface energy of graphene transferred by the wet and dry methods is estimated. Wetting transparency occurs for certain combinations of liquids and substrates. For graphene on a polar substrate, the surface energy decreases by 25 and 35% for the wet and dry transfer methods, respectively. However, the surface energy of graphene on dispersive substrates decreases by ~10% regardless of the transfer method. In conclusion, the surface energy of graphene is $36{\sim}38mJ/m^2$, and differs depending on the transfer method and polarity of the substrate.

Water Contact Angles of Graphene Transferred by Wet and Dry Transfer Methods (전사 방법에 따른 그래핀의 물 접촉각 변화)

  • Yoon, Min-Ah;Kim, Chan;Jung, Hyun-June;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.60-66
    • /
    • 2018
  • Graphene is a monolayer of carbon atoms (approximately 0.34 nm), arranged in a honeycomb network. It has been hailed as a next-generation flexible and transparent material because it has high electrical and thermal conductivities, excellent mechanical properties, as well as flexible and transparent properties. The wettability of graphene alters its adhesion or surface energy, and it is therefore an important parameter influencing its application in the fabrication of next-generation flexible and transparent electronics. Studies on the wettability of graphene are numerous and various opinions exist. However, almost all of these studies use the wet transfer method to transfer the graphene. In this study, therefore, we investigated the effect of wet and dry transfer methods on water contact angles of graphene on a substrate. The contact angles of substrates vary depending on the type of substrate. It was found that after graphene is transferred to the substrate, regardless of transfer method, the graphene/substrate contact angle increases to a value. The contact angle of graphene transferred using the dry transfer method is higher than the contact angle of graphene transferred using wet transfer methods. The wet transferred graphene is affected by the poly(methyl methacrylate) (PMMA) residue and the polar surface of substrate. The dry transferred graphene is influenced by the conformal contact between graphene and substrate.

Reduction of the Wet Surface Heat Transfer Coefficients from Experimental Data

  • Kim, Nae-Hyun;Sim, Yong-Sub
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.37-49
    • /
    • 2004
  • Four different data reduction methods for the heat transfer coefficients from experimental data under dehumidifying conditions are compared. The four methods consist of two heat and mass transfer models and two fin efficiency models. Data are obtained from two heat exchanger samples having plain fins or wave fins. Comparison of the reduced heat transfer coefficients revealed that the single potential heat and mass transfer model yielded the humidity-independent heat transfer coefficients. Two fin efficiency models-enthalpy model and humidity model-yielded approximately the same fin efficiencies, and accordingly approximately the same heat transfer coefficients. The heat transfer coefficients under wet conditions were approximately the same as those of the dry conditions for the plain fin configuration. For the wave fin configuration, however, wet surface heat transfer coefficients were approximately 12% higher. The pressure drops of the wet surface were 10% to 45% larger than those of the dry surface.

A Review on Transfer Process of Two-dimensional Materials

  • Kim, Chan;Yoon, Min-Ah;Jang, Bongkyun;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Large-area two-dimensional (2D) materials synthesized by chemical vapor deposition on donor substrates are promising functional materials for conductors, semiconductors, and insulators in flexible and transparent devices. In most cases, 2D materials should be transferred from a donor substrate to a target substrate; however, 2D materials are prone to damage during the transfer process. The damages to 2D materials during transfer are caused by contamination, tearing, and chemical doping. For the commercialization of 2D materials, a damage-free, large-area, and productive transfer process is needed. However, a transfer process that meets all three requirements has yet to be developed. In this paper, we review the recent progress in the development of transfer processes for 2D materials, and discuss the principles, advantages, and limitations of each process. The future prospects of transfer processes are also discussed. To simplify the discussion, the transfer processes are classified into four categories: wet transfer, dry transfer, mechanical transfer, and electro-chemical transfer. Finally, the "roll-to-roll" and "roll-to-plate" dry transfer process is proposed as the most promising method for the commercialization of 2D materials. Moreover, for successful dry transfer of 2D materials, it is necessary to clearly understand the adhesion properties, viscoelastic behaviors, and mechanical deformation of the transfer film used as a medium in the transfer process.

Multilayered Graphene Electrode using One-Step Dry Transfer for Optoelectronics

  • Lee, Seungmin;Jo, Yeongsu;Hong, Soonkyu;Kim, Darae;Lee, Hyung Woo
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • In this study, multilayered graphene was easily transferred to the target substrate in one step using thermal release tape. The transmittance of the transferred graphene according to the number of layers was measured using a spectrophotometer. The sheet resistance was measured using a four-point probe system. Graphene formed using this transfer method showed almost the same electrical and optical properties as that formed using the conventional poly (methyl methacrylate) transfer method. This method is suitable for the mass production of graphene because of the short process time and easy large-area transfer. In addition, multilayered graphene can be transferred on various substrates without wetting problem using the one-step dry transfer method. In this work, this easy transfer method was used for dielectric substrates such as glass, paper and polyethylene terephthalate, and a sheet resistance of ~240 ohm/sq was obtained with three-layer graphene. By fabricating organic solar cells, we verified the feasibility of using this method for optoelectronic devices.

Charge Transfer between STM Tip and Au(100) in Dry, H2O, and D2O Atmospheres

  • Utami, Anggi;Chung, Yonghwa;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.153-156
    • /
    • 2013
  • Charge transfer between STM tip and Au(100) has been investigated by using a Scanning Tunneling Microscopy (STM) technique in dry, $H_2O$, and $D_2O$ atmospheres. Dry atmosphere was indicated by humidity as low as 5 % and high humidity as high as 98% was managed by injecting $H_2O$ and $D_2O$ to the chamber. The current decayed more slowly in high humidity than in dry atmosphere. The plateau currents were found to appear at separations larger than ca. $5{\AA}$ where the current decay stopped depending on applied bias voltages. The polarity dependence was observed at the STM junction between Pt-Ir tip and the gold. On the contrary, little dependence was seen at the one between Au tip and the substrate electrode.

An Experimental Study on the Heat Transfer Characteristics of Two-phase closed Thermosyphon (밀폐형 2상 열사이폰의 열전달 특성에 관한 실험적 연구)

  • Cho, Ki-Hyun;Paek, Yee;Chung, Hyung-Kil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • The thermosyphon has been used as a heat transmission device in the heat recovery of low level energy and cooling for heat generating equipments. Many studies on the working fluids and wicks have been reported to improve the heat transfer efficiency of the thermosyphon. A low temperature heat pipe with acetone is chosen in the present study to compare the heat transfer characteristics due to pouring amount of working fluid, magnitude of power supplied and tilt angles. The thermosyphon made ⵁ$15.88{\times}0.8t{\times}600mm$ of copper, evaporation section 200mm, insulation section 25mm, condensation 375mm. Heat transfer rate of the thermosyphon increase as magnitude of power supplied increase and observe dry out phenomenon at 5~10% of pouring amount of working fluid. So thermosyphon at the 150kJ/s judged to need 12% or more. Heat transfer rate of the thermosyphon have nothing to do with tilt angles. Dry out phenomenon of the thermo syphon makes it possible that a low temperature thermosyphon may be used to control temperature and heat transfer of a system when the critical quantity of a working fluid is supplied in the thermosyphon.

  • PDF