DOI QR코드

DOI QR Code

Multilayered Graphene Electrode using One-Step Dry Transfer for Optoelectronics

  • Lee, Seungmin (Department of Advanced Circuit Interconnection, Pusan National University) ;
  • Jo, Yeongsu (Department of Nano Fusion Technology, Pusan National University) ;
  • Hong, Soonkyu (Department of Nano Fusion Technology, Pusan National University) ;
  • Kim, Darae (Department of Nanomaterials Engineering, Pusan National University) ;
  • Lee, Hyung Woo (Department of Advanced Circuit Interconnection, Pusan National University)
  • Received : 2017.01.12
  • Accepted : 2017.01.19
  • Published : 2017.02.25

Abstract

In this study, multilayered graphene was easily transferred to the target substrate in one step using thermal release tape. The transmittance of the transferred graphene according to the number of layers was measured using a spectrophotometer. The sheet resistance was measured using a four-point probe system. Graphene formed using this transfer method showed almost the same electrical and optical properties as that formed using the conventional poly (methyl methacrylate) transfer method. This method is suitable for the mass production of graphene because of the short process time and easy large-area transfer. In addition, multilayered graphene can be transferred on various substrates without wetting problem using the one-step dry transfer method. In this work, this easy transfer method was used for dielectric substrates such as glass, paper and polyethylene terephthalate, and a sheet resistance of ~240 ohm/sq was obtained with three-layer graphene. By fabricating organic solar cells, we verified the feasibility of using this method for optoelectronic devices.

Keywords

References

  1. T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology 20, 35-42 (2005). https://doi.org/10.1088/0268-1242/20/4/004
  2. C. G. Granqvist, "Transparent conductors as solar energy materials: a panoramic review," Solar Energy Materials and Solar Cells 91, 1529-1598 (2007). https://doi.org/10.1016/j.solmat.2007.04.031
  3. D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, "Widely transparent electrodes based on ultrathin metals," Optics Letters 34, 325-327 (2009) https://doi.org/10.1364/OL.34.000325
  4. Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. Kharrazi, and F. Atomny, "Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays," Thin Solid Films 460, 156-166 (2004) https://doi.org/10.1016/j.tsf.2004.01.052
  5. H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, "A transparent electrode based on a metal nanotrough network", Nature Nanotechnology 8, 421-425(2013) https://doi.org/10.1038/nnano.2013.84
  6. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Muller-Meskamp, and K. Leo "High conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cell", Advanced Functional Materials 21, 1076-1081 (2011) https://doi.org/10.1002/adfm.201002290
  7. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, "Scalable coating and properties of transparent, flexible, silver nanowire electrodes", ACS Nano 4, 2955-2963 (2010) https://doi.org/10.1021/nn1005232
  8. K. I. Bolotin, K. J. Sikes, Z. jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Communications 146, 351-355 (2008) https://doi.org/10.1016/j.ssc.2008.02.024
  9. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, "Giant intrinsic carrier mobilities in graphene and its bilayer", Physical Review Letters 100, 016602 (2008) https://doi.org/10.1103/PhysRevLett.100.016602
  10. Y. Zhang, J. W. Tan, H. L. Stormer, and P. Kim, "Graphene calling", Nature 438, 201-204 (2005) https://doi.org/10.1038/nature04235
  11. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene", Science 300, 1308 (2008)
  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science 306, 666-669 (2004) https://doi.org/10.1126/science.1102896
  13. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Twodimensional atomic crystals", Proceedings of the National Academy of Sciences of the United States of America 102, 10451-10453 (2005) https://doi.org/10.1073/pnas.0502848102
  14. X. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of large-area grapheme films for high performance transparent conductive electrodes" Nano Letters 9, 4359-4363 (2009) https://doi.org/10.1021/nl902623y
  15. A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials 6, 183-191 (2007) https://doi.org/10.1038/nmat1849

Cited by

  1. Liquid Sensing of a M-13 Bacteriophage-Based Colorimetric Sensor vol.26, pp.9, 2018, https://doi.org/10.1007/s13233-018-6079-z