• Title/Summary/Keyword: dry stream

Search Result 272, Processing Time 0.025 seconds

Experimental Study of the Oven Dried Soil Weight Measurement Using Singularity Analysis (특이점 분석에 의한 노건조된 흙의 건조무게 측정에 관한 실험적 연구)

  • Sukjoo Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.3
    • /
    • pp.5-14
    • /
    • 2023
  • The dry unit weight of the soil can be obtained by measuring the weight of the oven dried soil. According to the Korean Industrial Standards (KS F), oven dried soil at 110±5℃ continuously increases in weight when exposed to air. However, there is no regulation on the weight measurement time of oven dried soil, making it difficult to accurately measure the dry weight. In this study, a method to easily determine the dry weight was presented through the analysis of the weight singularity that appears during weight measurement. The weight singularity represents the smallest value among the measured weights, and is the weight at which the effect of moisture absorption in the air of the sample is minimized. In the course of the experiment, a container was selected using a statistical analysis method, and a photograph of the soil samples were presented using an optical microscope. In addition, the temperature of the weight singularity was measured using a non-contact infrared thermometer. As a result of analyzing the weight singularity of six types of soil, including Jumunjin sand, Naeseong stream sand, Yecheon weathered granite soil, Jeju sand, Sabkha sand, and Ulleung sand, the weight singularity of oven dried sample appeared between 8 and 27 seconds after weight measurement, and the temperature ranged from 103.4 to 108.13℃. The weight decrease rate of the singularity was 0.0066 to 0.0085% depending on the soil samples.

KDICical Characteristics and Microbial Activity of Streams Contaminated by The Abandoned Coal Mine Drainage (폐탄광 배수에 의해 오염된 하천의 화학적 특성과 미생물 활성)

  • Cho, Kyoung-Suk;Ryu, Hee-Wook;Chang, Young-Keun
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.365-373
    • /
    • 1996
  • A survey was carried out to investigate the contamination of streams by the acid mine drainage originated from the abandoned coal mines and coal refuse piles. The physico-KDICical characteristics such as pH, sulfate and elements concentrations in the water and sediment in streams were analyzed. Microbial activity in the sediment was evaluated by measuring dehydrogenase activities. At sites contaminated by acid mine drainage, the pH of the water and sediment declined to acidic range from neutral due to the accumulation of sulfate. The dehydrogenase activity ranged from 12 to $170{\mu}g-TPF{\cdot}g-dry\;soil^{-1}{\cdot}24h^{-1}$ at the contaminated sites, whereas uncontaminated sites had activities of 1,176~4,259 ${\mu}g-TPF{\cdot}g-dry\;soil^{-1}{\cdot}24h^{-1}$. The dehydrogenase activity was significantly affected by low pH of the sediment, indicating that high concentration of sulfate inhibited microbial activity. The concentrations of heavy metals such as Pb and Fe in contaminated sdeiment (37~46 ppm Pb; 46,000~464,000 ppm Fe) were much higher than those in the uncontaminated sediment. The concentration of Al in the contaminated water acidfied by coal mine drainage was in the range of 11 to 42 ppm. Compared with those in the uncontaminated sediment, the concentrations of Mn, Mg and Ca in contaminated sediment were low because of the leaching from soil to water by the acidfied stream water.

  • PDF

Effect of NPS Loadings from Livestock on Small Watersheds (축산농가에서 배출되는 비점오염 물질이 소규모 유역에 미치는 영향)

  • Lee, Su In;Shin, Min Hwan;Jeon, Je Hong;Park, Byeong Ky;Lee, Ji Min;Won, Chul Hee;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.27-36
    • /
    • 2015
  • The objective of this paper was to quantitatively analyze the effect of concentrated animal feeding operations (CAFO) NPS pollution on a small watershed water quality. Monitoring was conducted from March to October, 2013. Monthly flow rate and selected water quality at each monitoring site were measured during dry days. Rainy day monitoring also was conducted. Modeling was conducted to evaluate the effect of CAFO NPS pollution on the water quality at the watershed outlet. The highest and mean concentration of selected water quality indices during rainy days were higher than those in dry days in general. The highest TN concentration measured at the CAFP pollution discharge point was 237.831 mg/L. The results revealed that the CAFO NPS pollution sources could be equally blamed for the water quality degradation of the stream. However, the effect of the NPS pollution from CAFOs seemed not to be very influential to the watershed water quality at the outlet. SWAT modeling revealed that the TN load was reduced by 18.95 %, 23.39 % and 30.53 % at the watershed outlet if the TN load at the CAFO NPS pollution discharge point reduced by 20 %, 40 % and 60 %, respectively. It was thought that the natural attenuation processes played an important role. The modeling was based only on the assumption of the load reduction and not verified by the monitored data. Therefore, it was suggested that a long term monitoring studies for the evaluation of the impact of CAFO NPS pollution on the watershed water quality be conducted.

Microbiological and Chemical Analyses of Paldang Lake Water (팔당호 수질의 미생물학 및 화학적 분석)

  • 김상진
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.85-92
    • /
    • 1993
  • To investigate the eutrophication process and pollution characteristics in Paldang Lake, Korea, water and sediment samples were analysed during July 1986~June 1987. The transparency, chlorophyll-a concentration, dissolved oxygen concentration and biochemical oxygen demand in Paldang Lake ranged 0.5~3 m, 3-17 ${\mu}gI^{-1}$, 7.2~12.3 ppm and 0.5~2.3 ppm, respectively. Heterotrophic bacterial number fluctuated seasonally between $3.0{\times}10^{3}/ml and 5.0{\times}10^{5}/ml$ in the water column and between $2{\times}10^{6} and 1{\times}10^{8}$ in the I g dry sediment. Water turbulence and water quality of up-stream seem to play important roles for determining the water quality in Paldang Lake particularly where the hydraulic retention time is so short as about 5 days. The present water quality in Paldang Lake according to the criteria of lake water quality was shown to be between mesotrophic and eutrophic state by secchi depth(O.5 ~ 3 m) and chlorophyll-a concentration (3~17 ${\mu}gI^{-1}$). The distribution of coliform bacteria showed that the pollution was mainly due to the human activities in this area and it is needed to establish countmeasurements for the problems.

  • PDF

Ecological Health Assessments and Water Quality Patterns in Youdeung Stream (유등천에서의 생태학적 건강도 평가 및 수질양상)

  • Lee, Jae-Yon;Jang, Ha-Na;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.341-351
    • /
    • 2005
  • Ecological stream health, based on the index of biological integrity (IBI) , was evaluated at five sampling locations of Youdeung Stream during August-October 2004. For the study, we also analyzed spatial and temporal patterns of conventional water quality over tine period of 1995 ${\sim}$ 2004, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. The water quality parameters used here were conductivity, total suspended solids (TSS), biochemical oxygen demand $(BOD_5)$, chemical oxygen demand $(COD_{mn})$, total nitrogen (TN), and total phosphorus (TP). The multi-metric model values averaged 27.8 in the stream and ranged 24 ${\sim}$ 32. The health condition was judged as 'Fair' to 'Poor' conditions, according to the stream health criteria of US EPA (1993). Longitudinal variation occurred from the upstream to downstream reach; largest differences in all water quality variables occurred between Site 5 and the other sites. This was mainly attributed to the impacts of wastewater treatment plants near the locations. Also, relative proportions of tolerance and omnivore species increased in downstream reaches. The model values, however, did not match the values, based on water quality parameters. We assume that this may be associated with primarily reduced water volumn during dry season in the stream along with modified physical habitat conditions.

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Optimization of Multi-reservoir Operation considering Water Demand Uncertainty in the Han River Basin (수요의 불확실성을 고려한 한강수계 댐 연계 운영 최적화)

  • Chung, Gun-Hui;Ryu, Gwan-Hyeong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.89-102
    • /
    • 2010
  • Future uncertainty on water demand caused by future climate condition and water consumption leads a difficulty to determine the reservoir operation rule for supplying sufficient water to users. It is, thus, important to operate reservoirs not only for distributing enough water to users using the limited water resources but also for preventing floods and drought under the unknown future condition. In this study, the reservoir storage is determined in the first stage when future condition is unknown, and then, water distribution to users and river stream is optimized using the available water resources from the first stage decision using 2-stage stochastic linear programming (2-SLP). The objective function is to minimize the difference between target and actual water storage in reservoirs and the water shortage in users and river stream. Hedging rule defined by a precaution against severe drought by restricting outflow when reservoir storage decreases below a target, is also applied in the reservoir operation rule for improving the model applicability to the real system. The developed model is applied in a system with five reservoirs in the Han River basin, Korea to optimize the multi-reservoir system under various future water demand scenarios. Three multi-purposed dams - Chungju, Hoengseong, and Soyanggang - are considered in the model. Gwangdong and Hwacheon dams are also considered in the system due to the large capacity of the reservoirs, but they are primarily for water supply and power generation, respectively. As a result, the water demand of users and river stream are satisfied in most cases. The reservoirs are operated successfully to store enough water during the wet season for preparing the coming drought and also for reducing downstream flood risk. The developed model can provide an effective guideline of multi-reservoir operation rules in the basin.

Effects of Monsoon Rainfalls on Surface Water Quality in a Mountainous Watershed under Mixed Land Use (토지이용이 다변화된 산림 유역의 수질에 미치는 몬순 강우의 영향)

  • Jo, Kyeong-Won;Lee, Hyun-Ju;Park, Ji-Hyung;Owen, Jeffrey S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.197-206
    • /
    • 2010
  • To provide baseline information essential for assessing environmental impacts of monsoon rainfalls in a mountainous watershed under mixed land use, we investigated spatiotemporal variations in water quality using a combined approach of seasonal water quality survey and intensive storm samplings. Biannual water sampling at nine locations encompassing major land use types showed generally lower electrical conductivity and Cl- concentrations during the typical wet period compared to the dry period, indicating rainfall-induced dilution of dissolved ions. Total metal concentrations, however, were significantly higher during the monsoon period, probably associated with rainfall-induced increases in suspended sediments. Intensive storm sampling during a small monsoon rainfall event (18 mm) and an extreme event (452 mm) showed rapid changes in both suspended sediments and dissolved solutes in an agricultural stream draining the Haean Basin where arable lands have expanded rapidly over the recent decades. By contrast, a nearby forest stream derived from North Korea showed little responses to the small event compared to larges changes during the extreme event. In the agricultural stream total Pb concentrations showed significant positive relationships with suspended sediments. Although limited sampling frequency and locations require a cautious interpretation, the overall results suggest that expansion of agricultural fields in steep mountainous watersheds can increase the susceptibility of soil erosion and its off-site environmental impacts under increasing rainfall variability and extremes.

Suspended Sediments Influx and Variation of Surface Sediments Composition in Semi-enclosed Bay -Spring Season in Yeoja Bay South Coast of Korea- (반폐쇄된 만내 부유퇴적물 유.출입과 표층퇴적물 조성 변화 -남해 여자만 봄철-)

  • Choi, Jeong-Min;Woo, Han-Jun;Lee, Yeon-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • Mooring survey for measurement of tidal current and suspended sediments was carried out at 4 inlets of Yeoja Bay in April, 2000 in order to understand the source of sediment supply. Net suspended sediment transport load during 2 tidal cycles through the M-1(West Inlet) was $133.88\;kg{\cdot}m^{-1}$ toward the Yeoja Bay, whereas the flux through the M-2(Jabal Inlet) was outward the Bay with the amount of $146.43\;kg{\cdot}m^{-1}$. The influx through the M-3 and 4(Bulgyo and Dong Isa Stream) was $23.25\;kg{\cdot}m^{-1}$ and $4,312.31\;kg{\cdot}m^{-1}$ toward the Yeoja Bay, respectively. Influx of suspended sediment on Yeoja Bay mainly occurred in the Dong Isa Stream. In the wet season the composition of surface was coarser-grained than dry season, possibly due to the influx of silty sediment from Dong Isa Stream In the wet season.

  • PDF

Seasonal Ground Water Table Changes Following Forest Harvesting in Small Headwater Riparian Areas (산지계류 수변지역에서 산림벌채 후 지하수위의 계절 변화)

  • Choi, Byoung-Koo
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.620-628
    • /
    • 2012
  • This study addressed the influence of forest harvesting on seasonal water table dynamics in small headwater riparian areas. Four treatments including potential Best Management Practices(BMPs) for ephemeral and intermittent streams were implemented(BMP1, BMP2, clearcut and reference). Water table measurements were obtained at bi-monthly intervals for 3 years including one year of pre- and two years of post-harvest observations. Overall, water table responses affected largely by rainfall amount. In addition, significant increases in water table levels following harvesting occurred throughout the two post-harvest years. Water table levels increased up to 28.2cm in the clearcut treatment during 2008 and up to 54.2cm in BMP2 during 2009. However, increase in water table elevation was not directly related to basal area removal despite considerable differences in basal area removed between BMP2 and clearcut treatments. Water table rises were apparent in that water table were more elevated during dry season(June through November) than during wet season(December through May). These seasonal fluctuations were presumably driven by changes in evapotranspiration caused by differences in leaf area of overstory canopy and understory following harvest.