• Title/Summary/Keyword: dry stream

Search Result 272, Processing Time 0.031 seconds

Performance Test for a Horizontal Regenerative Evaporative Cooler (수평형 재생증발식 냉방기의 성능시험)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

Evaluation of low streamflow via distributed hydrological watershed modelling considering reservoir-weir releases and streamflow routing in Geum river basin (댐-보 연계방류를 고려한 분포형 유역수문 모델링을 통한 금강유역의 하천갈수 평가기법 개발)

  • Lee, Yonggwan;Kim, Wonjin;Jung, Chunggil;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.103-103
    • /
    • 2020
  • Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WFT)은 하천건천화 평가 및 예측을 위해 개발된 물수지 기반의 분포형 수문모형이다. 그러나 물수지 모형의 특성상 토양층 사이를 이동하는 수직적인 물의 거동은 파악하기 용이하나, 하천 및 지표를 따라 이동하는 물의 수평적인 거동 추적에는 한계가 있다. 본 연구에서는 DrySAT-WFT 모형에 댐·보 방류량을 고려한 하도 갈수량 추적 알고리즘을 적용하여 유출 모의 성능을 개선하고, 개선된 유출 모형을 금강 유역(9,915.5 ㎢)에 적용하여 건천화 원인 추적 및 평가를 수행하였다. 하천건천화 원인 추적을 위한 영향요소로 1976년부터 2015년까지 구축한 산림높이, 도로망, 지하수 이용량, 토지이용, 토심, 기상 자료를 활용하였다. 건천화 영향요소를 적용하기 전 기상자료만을 활용해 모의한 유출결과를 기준 시나리오로 설정하고 댐·보 지점을 대상으로 검보정을 진행하였다. 이후 각 건천화 영향요소를 적용한 유출 시나리오별 유량의 감소 비율과 건천화 기여 비율을 산정하여 영향평가를 수행하였다.

  • PDF

Analysis of Water Quality Improvement Effect by Securing Water Quality Characteristics and Flow Rate in the Geumho River (금호강 수질특성 및 유량확보에 따른 수질개선 효과 분석)

  • Kwak, Insoo;Choi, Boram;Jeon, Hyeryn;Kim, Sunae;Bae, Jaehyeong;Kim, Shin;Kim, Jungmin
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.6
    • /
    • pp.414-429
    • /
    • 2020
  • For the management of rivers, the target water quality is set by establishing the total amount of water pollution and water environment basic plan. For Geumho river T-P has achieved the target water quality, but for BOD, COD, TOC the target water quality of the water environment basic plan has been exceed for the past five years. Therefore, the flow rate for satisfying the target water quality was simulated by analyzing the load, load density, and pollution contribution rate of the Geumho river using BOD, COD, TOC and by utilizing QUAL-MEV a one-dimensional water quality model. According to the analysis of the load, the BOD, COD and TOC all showed the highest levels at the Geumho C point at 9,832.2 kg/day 20,656.6 kg/day, and 15,545.1 kg/day. The load density was highest at 9.47 kg/day/㎢, 37.55 kg/day/㎢, 30.20 kg/day/㎢, and 17.19 kg/day/㎢, 39.14 kg/day/㎢ in Dalseocheon stream during the wet seasons and dry seasons. Pollution contribution rate was highest at about 25 percent for Palgeocheon stream during the wet season and about 50 percent for Dalseocheon stream during the dry season. In addition, the correlation analysis between organic materials showed in the main stream and tributaty of the Geumho river that COD-TOC was 0.8 or higherthan BOD-COD and BOD-TOC in both the wet seasons and dry seasons. And after surveying the total amount of water pollution and the target quality of the water environment basic plan at Geumho C, it was analyzed that an additional flow tate of 14 times and 22 times was needed as of April 2019 (3.46 ㎥/sec).

A Study on the Determination of Optimal Location and Size for Underground Sluiceway Design (지하방수로 설계를 위한 적정 위치선정 및 규모 결정에 관한 연구)

  • Lee, Jong-Tae;Lim, Taek-Sun;Hur, Sung-Chul;Park, Sang-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.137-145
    • /
    • 2008
  • In this study, to reduce the flood damage caused by flood discharge exceeding project flood, the primary technology was applied to determining the optimal location and size for underground sluiceway. The Jungrang Stream was selected for this study because the stream was overflowed and the embankment section of the stream was destroyed owing to localized torrential rainfall in 1998 and 2001. Considering 200-year frequency storm, the inlets of the underground discharge channel were located at Seoul City limits, the confluence of Danghyun Stream, Wolgye 1-gyo, and the confluence of Mukdong Stream. The outlets were located at the estuary of Jungrang Stream and rightbank of Banpo Bridge in Han River. The transverse discharge according to the variation of overflow depth at the inlet of underground discharge channel was estimated and the effect of inundation reduction was analyzed. To examine the appropriate scale of the underground discharge channel, the 8 operation methods for the management of outlet discharge were compared considering four rules (only storage, the constant discharge rate, the constant discharge volume, and the mixture of the constant discharge rate and discharge volume). As a result, the effect of inundation reduction was most significantly improved when the inlet was located at the confluence of Danghyun Stream. The appropriate size of underground sluiceway for 200-year frequency storm was studied, and as a result, the appropriate diameters of the underground discharge channel were 12 m in case of only storage(Rule D), 9m in 50% of discharge(Rule E), 8 m in constant discharge volume(Rule F), and 7 m in mixture method(Rule G). This investigation process can be applied to design the underground discharge channel when the inundation damage is significant in coastal area due to embankment overflow. The underground discharge channel in Jungrang Stream can also be used as an underground road to link Seoul City to Uijeongbu City during dry season.

Geochemical Characteristics of Stream Sediments in the Konyang Area (곤양지역 하상퇴적물에 대한 지구화학적 특성)

  • Park Yaung-Seog;Park Dae-Woo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.329-342
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics for the stream sediments in the Konyang area. So we can estimate the environment contamination and understand geochemical disaster. We collect the stream sediments samples by wet sieving along the primary channels and slowly dry the collected samples in the laboratory and grind to pass a 200mesh using an alumina mortar and pestle for chemical analysis. Mineralogy, major, trace and rare earth elements are determined by XRD, XRE, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological groups of stream sediments, the studied area was grouped into quartz porphyry area, sedimentary rock area, anorthosite area and gneiss area. Contents of major elements for the stream sediments in the Konyang area were $SiO_2\;41.86{\sim}76.74\;wt.%,\;Al_{2}O_{3}\;9.92{\sim}30.00\;wt.%,\;Fe_{2}O_{3}\;2.74{\sim}12.68\;wt.%,\;CaO\;0.22{\sim}3.31\;wt.%,\;MgO\;0.34{\sim}3.97\;wt.%,\;K_{2}O\;0.75{\sim}0.93\;wt.%,\;Na_{2}O\;0.25{\sim}1.92\;wt.%,\;TiO_{2}\;0.40{\sim}3.00\;wt.%,\;MnO\;0.03{\sim}0.21\;wt.%,\;P_{2}O_{5}\;0.05{\sim}0.38\;wt.%$. The contents of trace and rare earth elements for the stream sediments were $Cu\;7{\sim}102\;ppm,\;Pb\;15{\sim}47\;ppm,\;Sr\;48{\sim}513\;ppm,\;V\;29{\sim}129\;ppm,\;Zr\;31{\sim}217\;ppm,\;Li\;14{\sim}94\;ppm,\;Co\;5.6{\sim}32.1\;ppm,\;Cr\;23{\sim}259\;ppm,\;Cs\;1.7{\sim}8.7\;ppm,\;Hf\;2.1{\sim}109.0\;ppm,\;Rb\;34{\sim}247\;ppm,\;Sc\;4.5{\sim}21.9\;ppm,\;Zn\;24{\sim}609\;ppm,\;Sb\;0.8{\sim}2.6\;ppm,\;Th\;3{\sim}213\;ppm,\;Ce\;22{\sim}1000\;ppm,\;Eu\;0.7{\sim}5.3\;ppm,\;Yb\;0.6{\sim}6.4\;ppm$. Generally, the contents of $Al_{2}O_{3}\;and\;SiO_2$ had a good relationships with each other in rocks but it had a bad relationships in stream sediments for this study area. The contents of $Fe_{2}O_3$, CaO, MnO and $P_{2}O_{5}$ had a good relationships with major and minor elements in stream sediments of this study area. The contents of Co and V in the stream sediments had a good relationships with other toxic elements.

Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System (우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과)

  • Lee, Kuang Chun;Choi, Bong Choel;Lim, Bong Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.

Development of Real-Time Flutter Analysis Program (실시간 플러터 해석 프로그램 개발)

  • Lee, Ju-Yeon;Bae, Jae-Sung;Hwang, Jai-Hyuk;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Wind tunnel test which is one of the method to predict the aeroelastic characteristics has difficulties to make scale-down structural model and achieve a specified free stream velocity. It is very costly and complicated to consider similarity relationships between real structure and scale-down structural model. "Dry Wind-Tunnel(DWT)" was proposed to overcome these difficulties. This is made up of Ground Vibration Test hardware and software to compute the aerodynamic forces. In the present study, program for computing the real-time unsteady aerodynamic forces which is an important part of DWT system was developed by Matlab Simulink and dSPACE. In addition, using this program and software which is a part of the test structure, a real-time flutter analysis was conducted and the results are verified by ZAERO.

The Ecological Management on Consideration of Vegetation Structure at Goduck Riverside Restoration Area in Hangang, Seoul (서울시 한강변 고덕 수변 생태복원지의 식물생태특성을 고려한 생태적 관리방안)

  • 이경재;한봉호;김정호;배정희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.86-101
    • /
    • 2004
  • This study was conducted to present the ecological management of Goduk Riverside Restoration Area in Hangang, Seoul by analyzing the change of the vegetation structure. The survey site was classified into three groups. These were the vegetation restoration area, the dry plant area, and the swampy plant area. There were 141 taxa including naturalized plants and 13 species recorded in 2001 and 258 taxa including naturalized plants and 42 species were recorded in 2003 by monitoring. Monitoring results showed that the alien plants such as Humulus japonicus expanded continuously except in the vegetation restoration area. It was found that the growing status of planted shrub plants were poor, and the naturalized plants status was thriving, and the soil environment was bad in the vegetation restoration area. The alien plants such as Humulus japonicus and Aster pilosus dominated continuously in the dry plant area. The swampy native herb plants number was decreased, but the Humulus japonicus community was expanded caused by the soil drying in the swampy plant area. Soil analysis showed that the soil acidity, the available phosphates and the concentration of calcium were highly effected by cultivation. We propose ecological management as follows based on the results of the change of vegetation and soil characteristics. The vegetation restoration area should be managed by visitor's characteristics. Replanting vegetations should be based on soil characteristics. The removal of naturalized plants and established monitoring with plots is also needed. In the dry plant area and the swampy plant area, naturalized plants need to be removed in order to facilitate bio-diversity and monitoring.

Run-off Forecasting using Distributed model and Artificial Neural Network model (분포형 모형과 인공신경망을 활용한 유출 예측)

  • Kim, Won Jin;Lee, Yong Gwan;Jung, Chung Gil;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.35-35
    • /
    • 2019
  • 본 연구에서는 분포형 수문 모형 Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WTF)을 활용해 우리나라의 1976년부터 2015년까지의 유출량을 산정하고, 이를 다층퍼셉트론(Multi Layer Perceptron) 인경신경망 모형(Artificial Neural Network Model)에 적용해 미래 유출을 예측하였다. DrySAT-WFT은 전국 표준 유역을 대상으로 하천 건천화 원인 추적 및 평가를 위해 개발된 모형으로 유출모의를 위한 기상자료 외에 건천화 영향 요소를 고려하기 위한 산림 높이, 도로망, 지하수 이용량, 토지이용, 토심 변화에 대한 DB를 적용 가능한 것이 특징이다. DrySAT-WFT를 위한 기상자료로 모의 기간에 대한 일별 강우량, 상대습도, 평균풍속, 평균 및 최고, 최저 기온, 일조시간을 구축하였으며, 연대별 건천화 영향 요소 DB를 구축하여 적용하였다. 전국 다목적 댐 보 12지점의 유량을 활용해 모형의 보정(2005-2010) 및 검증(2011-2015)을 실시한 결과, 평균 결정계수(Coefficient of determination, $R^2$)는 0.76, 모형효율성계수(Nash-Sutcliffe efficiency, NSE)는 0.62, 평균제곱근오차(average root mean square error, RMSE)는 3.09로 신뢰성 있는 유출 모의 결과를 나타내었다. 미래 유출량 예측을 위한 MLP-ANN은 1976년부터 2015년까지의 유출 모의 결과를 Training Set으로 훈련하여 $R^2$가 0.5 이상이 되어 신뢰성을 확보하였고, 2016년부터 2018년까지의 기간을 1개월 단위로 실제 유출량과 예측 유출량을 비교하며 적용성을 검증 및 향상시켰다.

  • PDF

Geochemistry of Stream Water around the Abandoned Boeun Coal Mine, Hoenam Area (보은제일폐탄광 주변 하천수의 지구화학적 특징)

  • Jeon, Seo-Ryeong;Shin, Ik-Jong;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • Stream water chemistry in the abandoned Boeun Jeil coal mine area was studied for a period of 3 months, including rainy and dry season. The stream waters were a nearly neutral and slightly alkali condition, and $Mg-SO_4$ type with Mg>Ca>Na>K and $SO_4>HCO_3>Cl>NO_3$. Chemical composition of the stream water was quite irregular during the experimental period. Concentrations of Na, K, $HCO_3$, U, Sr, and Cr decreased by $10{\sim}30%$ during rainy season, caused by dilution effects with rain. The concentration of Ca, Mg, $NO_3$, Cd, and Co increased during the rainy season, caused by more easily dissolved from bedrocks or mine drainage with slightly acidic condition than dry season. The stream water was enriched in Mg, Ca, $HCO_3$, $SO_4$, Al, Fe, Zn, Ni, Co, Cr, Cd, Sr and U. Concentrations of Na, Mg, Ca, $SO_4$, $HCO_3$, Fe, Zn, Ni, Sr, and U decreased linearly with distance from the mine adit. These elements were strongly controlled by dilution of unpolluted water influx and/or adsorption on the clay minerals and iron oxyhydroxide precipitates. This mine area exhibited two main weathering processes ; 1) oxidation with acidification derived from Fe sulphides, and 2) pH buffering due to Ca and Mg carbonate dissolution. This weathering processes were followed by adsorption of metals on iron oxyhydroxides and precipitation.

  • PDF