• Title/Summary/Keyword: dry shrinkage

Search Result 220, Processing Time 0.024 seconds

A Study on the Physical Properties of ATY Produced with Nylon FDY and ROY (Nylon FDY와 ROY로 제조한 ATY의 물성에 관한 연구)

  • Kim Seung Jin;Kim Jae Woo;Hong Sang Gi
    • Textile Coloration and Finishing
    • /
    • v.16 no.6
    • /
    • pp.35-43
    • /
    • 2004
  • This study surveys the physical properties of ATY produced with FDY and POY. ATY is made with 70d Nylon FDY and 80d Nylon POY using AIKI air jet texturing machines, respectively. The processing parameters such as air pressure and yam speed are varied, and air pressure is varied ranging with 8.5bar, l0.5bar and 1l.5bar, and yarn speed is varied ranging with 400m/mim, 450m/mim, and 500m/min. The various physical properties of ATY made by POY and FDY denier, wet shrinkage, dry shrinkage, tensile properties, thermal stress and instability are measured and discussed with air pressure and yam speed. The shrinkage simulation of ATY is performed for analysing the process shrinkage on the dyeing and finishing processes.

Influence on the Plastic Shrinkage of Concrete for a Varieties of Consistency (콘크리트의 Consistency 변화가 소성수축에 미치는 영향)

  • 오무영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4626-4630
    • /
    • 1978
  • The objective of this study is to investigate how the varieties of consistency of fresh concrete influence on the plastic shrinkage in dry condition. The test was conducted under the controlled chamber in which the temperature was kept at 25 ${\pm}$2$^{\circ}C$, the humidity 35 ${\pm}$3%, and the wind velocity 4.0 ${\pm}$0.5m/sec. The results obtained from the test are as follow. 1) The rate of evaporation was highest at 2-3 hour after casting, and decreased gradually. 2) The plastic shrinkage was increased as to the slump values. The shrinkage rate was very highest at 2-4 hour and hardly showed any changes after 6 hour. 3) The recommendation for good cloncrete is that slump value should be as low as possible in construction.

  • PDF

A Study on the Quality Properties of the Expansive For Dry-Shrinkage Compensation of the Floor Mortar (온돌바닥 모르터의 건조수축보상을 위한 팽창제의 품질특성 연구)

  • 이웅종;이종열;정연식;이순기;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.155-160
    • /
    • 2000
  • In this paper, we investigated quality properties for the expansive of the CaO-$CaSO_4$ family which used to compensate dry-shrinkage in the floor mortar of On-Dol heating System. This experimental study established the mix condition with quantity of the expansive and is to investigate the relativity between the compress strength and the length change and the relativity between the chemical properties and the length change with the analysis of the physical and chemical properties. As a result of the study, the expansive is controlled by more the CaO than the $CaSO_4$. The relativity between the compress strength and the length change is expressed by exponential function, showing that if the expansive performance is increased, the compress strength is decreased. And the relativity between the chemical properties and the length change is only relative the quantity of the F-CaO among the chemical properties, is expressed by the second order function, showing that if the F-CaO is increased, the expansive performance is increased.

  • PDF

The Effects of Drawing Conditions on Physical Properties of the Drawn Worsted Yarns (II) (연신공정 조건이 소모연신사의 물성에 미치는 영향 (II))

  • Han, Won-Hee;Kim, Seung-Jin;Jo, Jin-Hwang
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • This effects of drawing conditions on the physical properties of the drawn worsted yarns were investigated. The drawn worsted yarns were made on the yarn drawing system with various drawing conditions such as concentration of reducing agent, draw ratio, setting time of drawn yarn and concentration of oxidizing agent. The dry and wet shrinkage, irregularity(CV%), thin and thick part, hairiness and abrasion resistance of these various specimens were measured and discussed in terms of various drawing conditions.

An Experimental Study on Workability for Practical Use of High Workable and Normal Strength Concrete (고슬럼프 보통강도 콘크리트의 실용화를 위한 시공특성에 관한 실험적 연구)

  • Jung, Yang-Hee;Kim, Yong-Ro;Lee, Do-Bum;Jang, Sun-Ken
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.107-110
    • /
    • 2006
  • The purpose of this study is to suggest a reference data for the development of high workable and normal strength concrete using Polycarboxylate superplasticizer and granulated blast furnace slag as concrete admixtures. So in this study, it is quantitatively evaluated the workability, compressive strength, the heat of hydration and dry shrinkage of high workable concrete on normal compressive strength($21{\sim}27MPa$) for the practical use in construction field. As a result of this study, it is appeared that the performance of high workable and normal strength concrete is superior than that of ready-mixed concrete of the same strength through the B/P tests in the plants.

  • PDF

Effects of the Methods of Polyethylene Glycol Impregnation and Drying on the Volumetric Shrinkage of Wood (Polyethylene Glycol 주입방법과 건조방법이 목재 부피수축률에 미치는 효과)

  • Lee, Won-Hee;Kang, Chun-Won;Hong, Seung-Hyun;Kang, Ho-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • PEG (Polyethylene glycol) impregnation in wood reduces the occurrence of checking during kiln drying. The volumetric shrinkages of wood PEG impregnated by pressure (PEG-P) or soaking (PEG-S) methods, and oven-dried by vent (VD) or air-tight (AD) methods were measured and compared with the controls. The average oven-dry weight of PEG impregnated specimens was larger than that of the controls by 3.6 g, but was not influenced by the drying methods. The average of the total volumetric shrinkage of PEG-P-VD specimens was the least (2.3%), while that of CON-S-AD specimens was the largest (28.9%). Within a drying method the total volumetric shrinkage of the control was the largest followed by PEG-S and PEG-P specimens, which implied that residual PEG in wood restrained its shrinkage during drying.

Drying Shrinkage Characteristics of the Concrete Incorporated Shrinkage Reducing Agent According to Mixed Proportion of Concrete (콘크리트 배합조건에 따른 수축저감제의 건조수축 특성)

  • Kim, Young-Sun;Kim, Kwang-Ki;Park, Soon-Jeon;Kim, Jung-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.245-252
    • /
    • 2017
  • Recently, structures such as large retailers, outlets and warehouses have been increasing in accordance with changes in consumption patterns. Since these structures include ultra-flat slab members, they are thoroughly managed to control slab cracking by the plastic and drying shrinkage. In order to control the cracking of the slab member, a chemical crack reduction method is used. In particular, the use of the shrinkage reducing agent has been examined. However, domestic research results are limited. In this study, the shrinkage properties of concrete using shrinkage reducing agent and the drying shrinkage properties according to the mixing factors were investigated. The performance of domestic shrinkage reducing agent was appeared similar to that of overseas high-grade shrinkage reducing agent. As the shrinkage reducing agent usage increased, the drying shrinkage reduction effect increased. At the age of 100 days, the dry shrinkage rate of specimen with the shrinkage reducing agent of 1.5%was shown about half that of the specimen without the shrinkage reducing agent. The shrinkage reducing agent was gound to have no specific performance change for the use of the admixture.

Restraint Coefficient of Long-Term Deformation and loss Rate of Pre-Compression for Concrete (콘크리트 장기변형의 구속계수와 선압축력의 손실률)

  • 연정흠;주낙친
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.521-529
    • /
    • 2002
  • A restraint coefficient for creep and dry shrinkage deformation of concrete in a composite section was derived to calculate the residual stress, and an equation for the loss rate of the pre-compression force was proposed. The derived restraint coefficient was computed by using the transformed section properties for the age-adjusted effective modulus of elasticity. The long-term behavior of complicate composite sections could be analyzed easily with the restraint coefficient. The articles of the current design code was examined for PSC and steel composite sections. The dry shrinkage strains of $150 ~ 200$\times$10^{-6}$ for the computations of the statically indeterminate force and the expansion joint could be under-estimated for less restrained sections such as the reinforced concrete. The dry shrinkage strain of $180$\times$10^{-6}$ for the computation of residual stress in the steel composite section was unreasonably less value. The loss rate of 16.3% of the design code for the PSC composite section in this study was conservative for the long-term deformation of the ACI 205 but could not be used safely for that of the Eurocode 2. For pre-compressed concrete slab in the steel composite section, the loss rate of prestressed force with low strength reinforcement was much larger than that with high strength tendon. The loss rate of concrete pre-compression increased, while that of pre-tension decreased due to the restraint of the steel girder.

Material Properties Depending on the Maximum Aggregate Size and Fineness Modulus for Concrete Repair Materials (콘크리트 단면복구용 보수재료의 굵은 골재 최대치수 및 조립률에 따른 재료적 특성)

  • Sun-Mok Lee;Byung-Je Lee;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.62-69
    • /
    • 2023
  • Re-damage is frequently occurring for various reasons, including material factors, external factors, and factors caused by poor construction in concrete cross-section restoration work, so it is necessary to identify the cause and improve it. Cement-based materials are the most commonly used maintenance materials for concrete structures, and in particular, additional cross-sectional restoration work may be carried out due to re-damage such as cracks and excitement due to dry contraction of the repair material. In this study, a basic study was conducted to identify the characteristics of concrete while diversifying the maximum dimensions and assembly rate of thick aggregates to examine the effects of using thick aggregates in repair materials. As a result, the slump of concrete increased as the maximum size of thick aggregates increased, and the amount of air content was measured 1.88 to 2.35 times higher in the mixing using aggregates with a maximum aggregate size of 5 mm or more compared to the mixing group with a maximum aggregate size of 10 mm or more. It was found that compressive strength was greatly affected by the performance rate of thick aggregates. The compressive strength was measured the highest in the mixture using thick aggregates with the highest performance rate of 20 mm, and the compressive strength of the mixture with the lowest performance rate was more than 45%. As a result of the dry shrinkage measurement, the dry shrinkage was the lowest as the performance rate of the thick aggregate increased according to the change in the maximum dimensions and assembly rate of the thick aggregate, and the lowest performance rate was the largest in the mix. Through this study, it was confirmed that adjusting the particle size by diversifying the maximum dimensions and assembly rate of thick aggregates used in concrete structure repair materials can improve strength and workability and reduce dry shrinkage.

An Experimental Study on Early Strength and Drying Shrinkage of High Strength Concrete Using High Volumes of Ground Granulated Blast-furnace Slag(GGBS) (고로슬래그 미분말을 대량 사용한 고강도 콘크리트의 조기강도 및 길이변화 특성에 관한 실험적 연구)

  • Yang, Wan-Hee;Ryu, Dong-Woo;Kim, Woo-Jae;Park, Dong-Cheol;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.391-399
    • /
    • 2013
  • For high strength concrete of 40~60 MPa, the effects on the early strength and concrete dry shrinkage properties replacing 60~80% of Ordinary Portland Cement with Blast Furnace Slag Powder and using the Alkali Activator (Modified Alkali Sulfate type) are considered in this study. 1% Alkali Activator to the binder, cumulative heat of hydration for 72 hours was increased approximately 45%, indicating that heat of hydration contributes to the early strength of concrete, and the slump flow of concrete decreased slightly by 3.7~6.6%, and the 3- and 7- strength was increased by 8~12%, which that the Alkali Activator (Modified Alkali Sulfate type) is effective for ensuring the early strength when manufacturing High Strength Concrete (60%) of Blast Furnace Slag Powder. Furthermore, the dry shrinkage test, both 40 MPa and 60 MPa specimens had level of length changes in order of BS40 > BS60 > BS60A > BS80A, and the use of the Alkali Activator somewhat improved resistance to dry shrinkage.