• Title/Summary/Keyword: dry sand

Search Result 431, Processing Time 0.025 seconds

Effects of Gamma Irradiation and Ethylene Oxide Fumigation for the Quality Preservation of Spices and Dry Vegetables (건조향신 조미식품의 품질보존을 위한 효과적인 살균방법에 관한 비교연구)

  • 신광순;마점술;조종후
    • Journal of Food Hygiene and Safety
    • /
    • v.4 no.2
    • /
    • pp.119-132
    • /
    • 1989
  • Gamma irradiation as a new physical treatment was applied to comparative investigates with a conventional ethylene oxide fumigant on the microbiological and physicochemical qualities of selected spices and dry vegetables such as powdered red pepper, black pepper, welsh onion, onion, garlic, carrot, korean cabbage and instant ramyon soup. The microorganisms contaminated in the sample, including total viable count, thermophilic bacteria, aerobic spore and fungi counts between the $10^4\;to\;10^6/g$ range. Coliforms were found only in black pepper and welsh onion powder as the $10^2\;to\;10^3/g$ level. A radiation dose of 7 to 10 KGy were sterilized completely to the contaminated microorganisms, while ehthylene oxide (E.O.) fumigation reduced of them to the $10^3/g$ level. An optimum dose of irradiation was less detrimental than E.O. fumigation to the physicochemical properties of the sample. Sensory evaluation after three months of storage at room temperatures showed that the overall acceptability of irradiated sample was higher than that of the non treated control as well as E.O. fumigated samples. Comparison gamma irradiation with E.O. gas treatment showed that E.O. treatment was less effective than radiation in cotrolling microbial contamination of spices and vegetables.

  • PDF

Effects of Arbuscular Mycorrhizal Fungus, Glomus intraradices, on the Growth, Photosynthesis and Phosphorus Content of Robinia pseudoacacia Seedlings Treated with Simulated Acid Rain (Glomus 내생균근균 접종이 인공산성우를 처리한 아까시나무 묘목의 생장, 광합성, 인 함량에 미치는 영향)

  • Kim, Eun Ho;Lee, Kyung Joon;Lee, Kyu Hwa
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.735-742
    • /
    • 2006
  • The objective of this study was to elucidate the tolerance of woody plants to simulated acid rain in relation to mycorrhizal inoculation. Germinating seedlings of Robinia pseudoacacia were planted in 1I pots with autoclaved soil mixture of vermiculite, sand and nursery soil at 1:1:1 ratio. Each pot was inoculated with both crushed root nodules from a wild tree of the same species and commercial arbuscular mycorrhizal inoculum of Glomus intraradices at the time of planting the seedlings. Simulated acid rains at pH 2.6, 3.6, 4.6, and 5.6 were made by mixing sulfuric acid and nitric acid at 3: 1 ratio. Each pot received nutrient solution without N and P, and was also supplied with 180 ml of the one pH level of the acid rains once a week for 50 days. The plants were grown in the green house. At the end of experimental period, plants were harvested to determine contents of chlorophyll, mineral nutrients and net photosynthesis in the tissues, dry weight of the plants, and mycorrhizal infection in the roots. Mycorrhizal infection rate was significantly reduced only at pH 2.6, which meant vitality of G intraradices was inhibited at extremely low pH. Height growth, dry weight production, nodule production and chlorophyll content were increased by mycorrhizal infection in all the pH levels except pH 3.6. Particularly, mycorrhizal inoculation increased root nodule production by 85% in pH 5.6 and 45% in 4.6 treatments. But the stimulatory effect of mycorrhizal inoculation on nodule production was reduced at pH 3.6 and 2.6. Net photosynthesis was increased by mycorrhizal infection in all the pH levels. The phosphorus(P) content in the tissues was increased by 43% in average by mycorrhizal inoculation, which was statistically significant except in pH 2.6. It was concluded that mycorrhizal inoculation of Robinia pseudoacacia would enhance growth and resistance of the plants to acid rain by improving the photosynthesis, phosphorus nutrition, and more nodule production.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

Influence of Various Root Media in Pot Growth of 'Seolhyang' Strawberry on the Growth of Daughter Plants and Early Yield after Transplant ('설향' 딸기 포트육묘를 위한 혼합상토 종류가 자묘의 생육과 정식 후 초기수량에 미치는 영향)

  • Park, Gab Soon;Kim, Yeoung Chil;Ann, Seoung Won;Kang, Hee Kyoung;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.219-226
    • /
    • 2015
  • The objective of this research was to investigate the influence of various root media on the growth of mother and daughter plants during propagation and early yield after transplanting of 'Seolhyang' strawberry. To achieve this, daughter plants were fixed to connected small pots that contained expanded rice-hull (ERH), a strawberry-specialized commercial medium (SSCM), soil mother materials (SMM), or loamy sand (LS). Then, growth of daughter plants in above- and below-ground tissue as well as early yield after transplanting to plastic house soil were investigated. The growth of daughter plants in terms of plant height, leaf area and fresh weight were the highest in the SSCM treatment. Root growth in terms of the amount of primary roots and root dry weight were the highest in the treatments of ERH and SMM and the lowest in that of SSCM, among treatments tested. The ERH treatment also showed the highest values among treatments in root length, surface area and volume when roots with 0 to 0.4 mm in diameter were investigated. The flower bud differentiation of daughter plants began on Sept. 3 in the ERH treatments, earlier than the SMM (Sept. 5) and in SSCM (Sept. 7) treatments. The tissue N contents of daughter plants were in the range of 1.41 to 1.55% in all treatments, and no significant differences were observed among treatments. This indicates that the low moisture retention capacity of ERH and water stress, rather than tissue N contents, promote the flower differentiation of daughter plants. In the evaluation of early yield after transplant, the ERH treatment of showed the highest yield in the period from November to December, reaching 667 g fruit weight per 10 plants. The yields per 10 plants in the other treatments were 581 g in SMM, 475 g in SSCM and 295 g in LS. Above results imply that the various root media have different effects on the growth of daughter plants as well as flower bud differentiation. Therefore, improvement in early yield after transplant can be achieved through selection of proper root medium for daughter plant propagation.

Effects of Initial Defoliation Stage and Defoliation Interval on the Growth of White Clover Cultivars Differing in Leaf Size (최초예취시간 및 예취간격이 엽의 크기가 다른 White Clover 품종들의 생장에 미치는 영향)

  • 강진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.264-273
    • /
    • 1992
  • Availability of white clover (Trifolium repens L.) has been limited due to its poor introduction to swards and lack of persistence under improper grazing management. This experiment was conducted to determine the effects of initial defoliation stage and defoliation interval on the growth of white clover varieties. Individual plants of Regal (large leaf), Louisiana S.1 (medium-large leaf), Grasslands Huia (medium-small leaf) and S184 (small leaf) were grown in containers (4.5 $\times$ 13.5 cm) containing a 1:2:1 soil:sand:Promix until reaching to the stage of 1, 4, or 8 trifoliolates, and then clipped to remove all fully expanded leaves every 7 or 28 days (d). For analysis of morphological parameters, plants were sampled on the final harvest date (0 d), and 7, 14, 21, and 28 d after the final harvest date. Harvested dry weight (dw) of all varieties declined as defoliation interval declined or initial defoliation was made earlier. That of Regal was the highest as initial defoliation was delayed. On the 7 d regrowth shoot and root dw were increased as initial defoliation was delayed or interval lengthened, whereas on the 28 d regrowth the trend was alleviated. Root dw and biomass of Regal were higher than the other varieties during the whole regrowing period, when the increase of biomass resulted from that of shoot dw. Leaf areas and petiole lengths of all varieties declined under 7 d defoliation interval. The area and the length declined with earlier initial defoliation on the 7 d regrowth but not on the 28 d regrowth. Stolon length and growing tips of S184 were the highest and increased more steeply during regrowth, while those of Regal were the lowest and did slightly. It is concluded that the continuous defoliation and the first defoliation at earlier growth stage have detrimental effects on growth of white clover, although larger leaf types are more productive but less persistent in a sward than smaller leaf types.

  • PDF

Influence of Soil Temperature on Growth and Nodulation Competition of Bradyrhizobium sp. Strains in the Rhizosphere of Peanut (온도(溫度)가 땅콩근류균(根瘤菌)의 근류형성(根瘤形成) 경합(競合)에 미치는 영향(影響))

  • Lee, Sand-Bok;Choi, Youn-Hee;So, Jae-Don;Kim, Moo-Key
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.197-203
    • /
    • 1993
  • Greenhouse experiments were conducted to avaluate strain competition, nodulation, patterns of nodule occupancy and population changes of Bradyrhizobium sp. strain HCR-46 $str^{r}cep^{r}$ and CB756 $str^{r}rif^{r}$ in the rhizosphere of peanut(Arachis hypogaea L.) under different root temperatures. Inoculated with two strains using seed coating with peat slurry under different root temperatures, population of each strain in the rhizosphere increased with plant growth and multiplication rate of inoculum in the unit weight of root were showed the highest from 10 to 15days after sowing. The multiplication rate of inoculum in the rhizosphere was $28^{\circ}C$>$34^{\circ}C$>$22^{\circ}C$. The density of HCR-46 $str^{r}cep^{r}$ was more increased than that of CB756 $str^{r}rif^{r}$ under $22^{\circ}C$ and $28^{\circ}C$. While the density of two strains showed no difference under $34^{\circ}C$. Inoculated with HCR-46 $str^{r}cep^{r}$ and CB756 $str^{r}rif^{r}$, respectively at 22, 28 and $34^{\circ}C$, nodulation of each strain was dominated in its inoculation portion. Inoculated with the mixture of HCR-46 $str^{r}cep^{r}$ and CB756 $str^{r}rif^{r}$, occupancy rate of HCR-46 $str^{r}cep^{r}$ was dominated over that of CB756 $str^{r}rif^{r}$ at $22^{\circ}C$ and $28^{\circ}C$, but that was similar between them at $34^{\circ}C$. Dry mass, nodulation, nitrogen content per plant and nitrogenase activity showed higher at $28^{\circ}C$ than at $32^{\circ}C$ and $22^{\circ}C$, while those were higher in HCR-46 $str^{r}cep^{r}$ and mixing HCR-46 $str^{r}cep^{r}$ with CB756 $str^{r}rif^{r}$ than in CB756 $str^{r}rif^{r}$.

  • PDF

Ecophysiological Characteristics of Chenopodiaceous Plants - An Approach through Inorganic and Organic Solutes - (명아주과 식물의 생리생태학적 특성 - 무기 및 유기용질을 통한 접근 -)

  • Choo, Yeon-Sik;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.397-406
    • /
    • 2000
  • In order to clarify the ecophysiological characteristics of Chenopodiaceae which widely distribute on saline and arid habitats, we collected 10 chenopodiaceous plant species, examined their inorganic and organic solute patterns, and confirmed several common physiological characteristics. In spite of high soil Ca/sup 2+/ contents, chenopodiaceous plants had a little water-soluble Ca within cells, but contained high contents of acid-soluble Ca particularly as a result of Ca-oxalate formation. These plant species also showed accumulation of inorganic ions such as K/sup +/, NO₃/sup -/ and Cl/sup -/, and Na/sup +/especially in saline habitats instead of K/sup +/ Meanwhile, with respect to nitrogen metabolism they retained high N contents in leaves, but showed very low amino acid contents. Additionally, they contained very little proline known to act as a cytoplasmic osmolyte. To ascertain whether this physiological characteristics in the field also can be found under controlled conditions, 7 chenopodiaceous plants (Atriplex gmelini, Corispermum stauntonii, Salicornia herbacea, Suaeda aspayagoides, Suaeda japonica, Chenopodium album var. centrorubrum, C. serotinum) were selected and cultivated under salt treatments. As well as field-grown plants, selected plant species showed similar solute pattern in growth experiment. In summary, the family of Chenopodiaceae represents the following physiological properties; high storage capacity for inorganic ions (especially alkali cations, nitrate and chloride), oxalate synthesis to maintain lower soluble Ca contents within cytoplasm, and low contents of amino acids. In addition to some characteristics mentioned above, the physiological plasticities of Chenopodiaceae which can properly regulate their ion and solute pattern according to soil conditions may enable its representative to grow in dry sand dune and salt marsh habitats.

  • PDF

Sensitivity of rice Plant to Potassium Stress of Various Growth Stages -II Effect of potassium depression on grain yield and its relation to nutrient content (생육시기별수도(生育時期別水稻)의 가리부족(加里不足)에 대(對)한 감수성(感受性) -II 수량(收量)에 대(對)한 가리결제(加里缺除)의 영향(影響) 및 수량(收量)과 양분함량(養分含量)과의 관계(關係))

  • Park, Hoon;Mok, Sung Kyun;Kim, Sung Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.163-175
    • /
    • 1974
  • Effects on yields, yield components and nutrient content of potassium depression for two or three weeks at various growth stages were investigated in rice (var. Jinheung) under sand culture system.(K 40 ppm 1973) 1. Analysis of variance showed significant difference among treatments of both two-week (at p=0.01) and three-week depression (at p=0.05) in yield. 2. Most sensitive stage to potassium depression on yield appeared two weeks until heading (42% yield decrease) and sensitivity decreased the growth stage is apart from heading either before or after. During 30 days after transplanting two-week potassium depression increased yield, but three-week depression decreased yield. Until about 30 days after heading depression caused poor yield. 3. Root potassium involves in harvest index, filled grain ratio and grain weight with significant correlation and considerably in spikelet per panicle while potassium in leaf sheath+culm involves considerably in spikelet per panicle and panicle per hill. Relative total dry matter weight was significantly correlated with panicle per hill, spikelet per panicle and K or K/Ca+Mg only in leaf sheath+culm. The indications are that root potassium contributes for building sink and efficiency of structure while potassium in leaf sheat+culm primarily for building source, productive structure. 4. Relative yield was significantly correlated with potassium content in root and leaf sheath+culm and with K/Ca+Mg and its ratio before and after depression in root indicating that potassium depression occurs greatly in root and that K/Ca+Mg might have more important role than K content alone under depression. 5. Optimum level of $K_2O$ appears around 3% in leaf blade. 4% in leaf sheath+culm and 1% in root under the assumption that below these level the same content has the same role in relation to yield during growth. The K/Ca+Mg appeares to be 2.5 in root and should not decrease throughout the growth stages. 6. The increase of sodium content in plant by K depression was highest, especially in leaf sheath during the most insensitive period to K depression suggesting that insensitivity may be attributed to partial replacement of Na for K. Partial replacement seems very little in sensitive stage (later stage) and sensitive organ (root).

  • PDF

Evaluation of Effective Sensing Distance and Measurement Efficiency for Ground-Based Remote Sensors with Different Leaf Distribution in Tobacco Plant (연초의 엽위 분포형태에 따른 지상 원격센서의 유효 탐사거리와 측정 효율성 평가)

  • Jeong, Hyun-Cheol;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.126-136
    • /
    • 2008
  • Tobacco plants grown in pots by sand culture for 70 days after transplanting were used to evaluate the sensing distance and measurement efficiency of ground-based remote sensors. The leaf distribution of tobacco plant and sensing distance from the sensors to the target leaves were controlled by two removal methods of leaves, top-down and bottom-up removal. In the case of top-down removal, the canopy reflectance was measured by the sensor located at a fixed position having an optimum distance from the detector to the uppermost leaf of tobacco every time that the higher leaves were one at a time. The measurement of bottom-up removal, a the other hand, was conducted in the same manner as that of the top-down removal except that the lower leaves were removed one by one. Canopy reflectance measurements were made with hand held spectral sensors including the active sensors such as $GreenSeeker^{TM}$ red and green, $Crop\;Circle\;ACS-210^{TM}$ red and amber, the passive sensors of $Crop\:Circle^{TM}$, and spectroradiometer $SD2000^{TM}$. The reflectance indices by all sensors were generally affected by the upper canopy condition rather than lower canopy condition of tobacco regardless of sensor type, passive or active. The reflectance measurement by $GreenSeeker^{TM}$ was affected sensitively at measurement distance longer than 120 cm, the upper limit of effective sensing distance, beyond which measurement errors are appreciable. In case of the passive sensors that has no upper limit of effective distance and $Crop\;Circle^{TM}(ACS210)$ that has the upper limit of effective sensing distance specified with 213 cm, longer than that of estimated distance, the measurement efficiency affected by the sensing distance showed no difference. This result suggests that it is necessary to use the sensor specified optimum distance. The result revealed that active sensors are more superior than their passive counterparts in establishing between the relative ratio of reflectance index and the dry weight of tobacco treated by top-down removal, and in the evaluation of biomass. $The\;Crop\;Circle\;ACS-210^{TM}$ red was proved to have the highest efficiency of measurement, followed by $Crop\;Circle^{TM}(ACS210)$ amber and $GreenSeeker^{TM}$ red, $Crop\;Circle^{TM}$ passive, $GreenSeeker^{TM}$ green, and spectroradiometer, in descending order.

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF