• Title/Summary/Keyword: dry sand

Search Result 431, Processing Time 0.033 seconds

Evaluation of Biomass and Nitrogen Nutrition of Tobacco under Sand Culture by Reflectance Indices of Ground-based Remote Sensors (지상원격측정 센서의 반사율 지표를 활용한 사경재배 연초의 생체량 및 질소영양 평가)

  • Kang, Seong-Soo;Jeong, Hyun-Cheol;Jeon, Sang-Ho;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.70-78
    • /
    • 2009
  • Remote sensing technique in agriculture can be used to identify chlorophyll content, biomass, and yield caused from N stress level. This study was conducted to evaluate biomass, N stress levels, and yield of tobacco (Nicotiana tabacum L.) under sand culture in a plastic film house using ground-based remote sensors. Nitrogen rates applied were 40, 60, 80, 100, 120, and 140 percent of N concentration in the Hoagland's nutrient solution. Sensor readings for reflectance indices were taken at 30, 35, 40, 45, 50 and 60 days after transplanting(DAT). Reflectance indices measured at 40th DAT were highly correlated with dry weight(DW) of tobacco leaves and N uptake by leaves. Especially, green normalized difference vegetation index(gNDVI) from spectroradiometer and aNDVI from Crop Circle passive sensor were able to explain 85% and 84% of DW variability and 85% and 92% of N uptake variability, respectively. All the reflectance indices measured at each sampling date during the growing season were significantly correlated with tobacco yield. Especially the gNDVI derived from spectroradiometer readings at the 40th DAT explained 72% of yield variability. N rates of tobacco were distinguished by sufficiency index calculated using the ratio of reflectance indices of stress to optimum plot of N treatment. Consequently results indicate that the reflectance indices by ground-based remote sensor can be used to predict tobacco yield and recommend the optimum application rate of N fertilizer for top dressing of tobacco.

Development and Cost-effective Evaluation of Grass Blocks Minimizing Construction Waste (건설폐기물을 최소화한 비용 효율적 잔디 블록 기법 개발 및 평가)

  • Jeon, Minsu;Hong, Jungsun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.359-365
    • /
    • 2017
  • Impermeable surfaces such as transportation land uses including roads and parking lots accumulate high heavy metals and particulate matters concentration especially during dry season which worsens the river water quality and distort the water circulation system during rainfall events. Recently, the government has been promoting policies to install Low Impact Development (LID) facilities such as permeable pavements or grass blocks in parking lots or pavements. However, transition of asphalt-paved surfaces to permeable pavement generated asphalt wastes which are detrimental to the environment and has cost implications due to its removal and disposal. Therefore this study was conducted to provide a method of constructing a cost-effective permeable pavement to reduce waste generation and cost. In this study, comparative analysis of the water circulation capacity and economic efficiency of the traditional construction method and new method proposed in this study through the lab-scale experiment. The proposed method was to make holes in existing asphalt pavements, layout geotextile fabric and permeable base media such as sand before compaction. After compaction, layout grass blocks on the compacted base media then layout sand in between each grass blocks before compaction. Apparently, there was no significant difference between the traditional installation method of permeable pavement and the proposed method in this study considering surface runoff, infiltrated volume, stored volume, and rainfall-runoff delay time. The proposed method in this study generated 86% less wastes compared to the traditional installation method and has 70% cost reduction considering asphalt removal and disposal. The construction method proposed in this study yielded similar performance compared to the traditional installation method and water circulation effect, but was proven to be less complicated and economical.

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.

Effects of Culture Media and Nutrient Solutions on the Yield and Quality of Cucumber(Cucumis sativus L.) and Tomato (Lyocpersicon esculentum MILL.) (배지(培地) 및 양액(養液)의 차이(差異)가 오이와 토마토의 수량(收量)과 품질(品質)에 미치는 영향(影響))

  • Park, Kuen-Woo;Lee, Yong-Beom;Choi, Nam-Hoon;Jeong, Jin-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.2
    • /
    • pp.143-151
    • /
    • 1990
  • This study was carried out to investigate the influence of different types of nutrient solutions and culture media on the growth and quality of cucumber(Cucumis sativus L.) and tomato(Lycopersicon esculentum Mill.). The results are summarized as follows : 1. The growth and yield of cucumber and tomato were best in rockwool culture with Cooper solution. 2. In sand-sack culture, growth and yield of cucumber and tomato were higher with compound fertillzer solution. 3. Growth and yield of cucumber and tomato were more effective in rockwool culture than in soil culture in early growth stages, and vice versa in later growth stages. 4. Vitamin C contents of cucumber and tomato showed no differences between soil cultures and hydroponics, except rockwool culture with compound fertilizer solution. 5. The dry weight, total-N, and mineral content of cucumber and tomato showed no differences among all types of hydroponics.

  • PDF

Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag (콘크리트용 잔골재로서 석탄가스화 용융슬래그(CGS)의 활용성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • This study is analysis of the utilization as a concrete fine aggregate on CGS, a by-product of Integrated coal gasification combined cycle(IGCC). That is, in KS F 2527 "Concrete aggregate," properties of 1~12times to CGS were evaluated, focusing on quality items corresponding to natural aggregate sand(NS) and melted slag aggregate sand(MS). As a result, the distribution of grain shape, safety and expansion were all satisfied with KS standards by physical properties, but the quality was unstable at 7~12times of water absorption ratio and absolute dry density. The particle size distribution was unstable due to asymmetry distribution of coarse particles, and particles were too thick for 7~12times. The passing ratio of 0.08mm sieve was also out of the KS standard at part factor of 7~12times, but chloride content, clay contents, coal and lignite were all satisfactory. Meanwhile, chemical composition was satisfactory except for $SO_3$ in 1~6times, and content and amount of harmful substances were all within the specified value except for F in 7~12times. As a result of SEM analysis, the surface quality and porosity were 7~12times more than 1~6times, and it was the quality was degraded. Therefore, it is necessary to reduce the quality deviation by using separate measures in order to utilize it as concrete aggregate in the future, and if it is premixed with fine quality aggregate, it will contribute positively to solve aggregate supply shortage and utilize circulation resources.

Effects of bed material on scouring under high-velocity flow conditions (고유속 흐름에서 하상재료에 따른 세굴 영향 연구)

  • Kim, Gwang Soo;Jung, Dong Gyu;Kim, Young Do;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.133-139
    • /
    • 2019
  • In this study, the degree of scouring according to the bed material according to the flow rate and the relationship between the flow velocity and the bed scouring were investigated in order to examine the operability of the revetment and embankment. The materials used in the experiment were sand and loess as materials used in the embankment. We measured the scouring of the material according to the change of the flow velocity by using the indoor high flow velocity experiment device and verified the flow rate. In this way, The purpose of this study was to compare and analyze changes in material before and after scouring, and compare basal scouring evaluation by bed material with high flow velocity. In case of sand, the cohesive force is very weak, so more than 40% of the material is lost even at less than 1.0 m/s. In the case of loess, less than 6% of the bed material is lost at more than 2 m/s. The reason why the material was lost was that the cohesion was so strong that the material was dried after the compaction and cracked. As a result, the material was lost from the part where the dry crack occurred. In this study, the composition and loss of bed materials were evaluated.

Egg Development and Early Life History of the Korean Endemic Sand Spine Loach, Cobitis nalbanti (Pisces: Cobitidae) (한국고유종 점줄종개 Cobitis nalbanti의 난발생 및 초기생활사)

  • Ko, Myeong-Hun;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.31 no.1
    • /
    • pp.30-38
    • /
    • 2019
  • Egg development and early life history of the Korean endemic sand spine loach, Cobitis nalbanti, were investigated in the present study. Adult fish were sampled using spoon nets at the Yeongsan River in Seongam-ri, Bukha-myeon, Jangseong-gun, Jeollanam-do, Korea, June 2011. Eggs were obtained after injecting Ovarprim into females. Eggs were then artificially fertilized using the dry method in the laboratory. Mature eggs were transparent and slightly adhesive with light yellowish coloring, measured $0.99{\pm}0.03mm$ ($mean{\pm}SD$) in diameter. And number of spawned eggs were $1,527{\pm}410$ per individual. Hatching (50%) of the embryo occurred 52 hours after fertilization a water temperature of $25^{\circ}C$, and the average newly hatched larvae size was about $4.2{\pm}0.22mm$ in total length. At fifth day after hatching, the larval total length reached $6.0{\pm}0.34mm$ on average and their yolk sac had been completely absorbed. At fifteen day after hatching, larva entered the juvenile stage and reached $10.8{\pm}0.45mm$ in total length. At 100th day after hatching, the formation of Gambetta's zone of four dotted line was complete and juveniles were similar in general appearance to adults, and they averaged $41.1{\pm}2.95mm$ in total length.

Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials (완충재 설계시 고려사항 및 고기능 완충재 연구 현황)

  • Lee, Gi-Jun;Yoon, Seok;Kim, Taehyun;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.59-77
    • /
    • 2022
  • Currently, the design reference temperature of the buffer material for disposing of high-level radioactive waste is less than 100℃, so if the heat dissipation capacity of the buffer material is improved, the spacings of the disposal tunnel and the deposition hole in the repository can be reduced. First of all, this study tries to analyze the criteria for thermal-hydraulic-mechanical performance of the buffer materials and to investigate the researches regarding the enhanced buffer materials with improved thermal conductivity. First, the thermal conductivity should be as high as possible and is affected by dry density, water content, temperature, mineral composition, and bentonite type. the organic content of the buffer material can have a significant effect on the corrosion performance of a canister, so the organic content should be low. In addition, hydraulic conductivity of the buffer material should be less than that of near-field rock and swelling pressure should be appropriate for buffer materials to function properly. For the development of enhanced buffer materials, additives such as sand, graphite, and graphite oxide are typically used, and a thermal conductivity can be greatly improved with a very small amount of graphite addition compared to sand.

Performance Evaluation of Pull-out Load of a New Type of Double-wall Pile Foundation for Easy Demolition (기초구조물 회수가 용이한 신형식 이중벽 말뚝기초의 인발하중 성능평가)

  • Kim, Jae-Hyun;Kim, Jeong-Soo;Lee, Minjy;Sven, Falcon Sen;Choo, Yun Wook;Hwang, Sung-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.21-32
    • /
    • 2022
  • Steel pile foundations are widely used for offshore constructions due to their high bearing capacity and efficiency. Typically, offshore structures that have reached the end of their design life are required to be demolished. However, pile foundations are often left on site due to technical and economic limitations. The pile left on the site not only pollutes the environment, but can also cause obstacles for the construction of new structures. Therefore, research is required to completely eliminate these foundations at the site. In this study, a new type of double-wall pile foundation that can drastically reduce the pull-out load was conceptually proposed, and a series of model tests were performed to validate the performance of the double-wall pile foundation. The installation and extraction of the double-wall pile were simulated in dry sand in the model test, and the measured up-lift load was compared to that of the conventional pile. According to the result, the maximum up-lift load induced by the decommissioning of the double-wall pile was reduced by 45% when compared to the traditional pile in dense sand. This study verified the mechanism for reducing the up-lift load of the double-wall foundation and confirmed the possibility of completely decommissioning a pile that has reached the end of its nominal service life.

Nutrient Uptake by Reeds Growing in Subsurface-flow Wetland Constructed to Purify Stream Water (하천수정화 여과습지에서 성장하는 갈대의 영양염류 흡수량)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.89-99
    • /
    • 2006
  • The growth and biomass of reeds(Phragmites australis) growing in a subsurface treatment wetland system were investigated from April 2003 to October 2003. Nitrogen(N) and phosphorous(P) concentrations in above-ground(AG) and below-ground(BG) tissues of reeds were examined and the removal rate of N and P by reeds were analyzed. The system, 29 m in length, 9 m in width and 0.65 m in depth, was constructed in June 2001 on a floodplain in the down reach of the Kwangju Stream in Korea in order to purify polluted water of the stream. A bottom layer of 45 cm in depth was filled with crushed granites(15~30 mm in diameter) and a middle layer of 10 cm in depth was filled with pea pebbles(10 mm in diameter). An upper layer of 5 cm contained course sand. Reeds were transplanted on the surface of the system, which were dug out of natural wetlands, and their shoots were trimmed 40 cm in height. The height and density of the shoots averaged 237.7 cm and 244.0 shoot/$m^2$, respectively, when the reeds grew fully. The maximum biomass of AG and BG tissues were 1,964 and 1,577 g/$m^2$, respectively, and the AG : BG ratio of biomass was 1.26. Mean AG and BG dry weights were recorded as 1,355 and 748 g/$m^2$, respectively. The AG and BG tissue concentrations of N averaged 12.37 and 10.01 mg/g, respectively, and those of P 2.37 and 2.03 mg/g, respectively. Inflow to the system averaged 40 $m^3$/day. The concentrations of total nitrogen(T-N) in influent and effluent were 8.4 mg/L and 3.2 mg/L, respectively, and those of total phosphorous(T-P) were 0.73 and 0.38 mg/L, respectively. The total removal of T-N and T-P by the system during the investigation period averaged 140.2 and 9.7 g/$m^2$, respectively, and the total uptake of N and P by the reeds were calculated as 24.39 and 4.73 g/$m^2$, respectively. Average removals of about 17% of N and about 49% of P by reeds were recorded. The N and P concentrations in AG tissues were significantly different among the three zones of the system:near to inflow(St1), in the middle of system(St2), and near to outflow(St3). The N and P concentrations in BG tissues were also significantly different among St1, St2 and St3. N and P concentrations in AG and BG tissues of reeds growing in St1 were higher than those in St2 and St3. The height and density of shoots of reeds in St1 were larger than those in St2 and St3. Significant amounts of N and P in the influent were taken up by reeds in St1.