• Title/Summary/Keyword: dry sand

Search Result 431, Processing Time 0.029 seconds

Mix Design of Lightweight Aggregate Concrete and Determination of Targeted Dry Density of Concrete (경량골재 콘크리트의 배합설계 및 목표 콘크리트 기건밀도의 결정)

  • Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.491-497
    • /
    • 2013
  • The objective of the present study is to establish a straightforward mixture proportioning procedure for structural lightweight aggregate concrete (LWAC), and evaluate the selection range of the targeted dry density of concrete against the designed concrete compressive strength. In developing this procedure, mathematical models were formulated based on a nonlinear regression analysis over 347 data sets and two boundary conditions of the absolute volume and dry density of concrete. The proposed procedure demonstrated the appropriate water-to-cement ratio and dry density of concrete to achieve the designed strength decrease with the increase in volumetric ratio of coarse aggregates. This trend was more significant in all-LWAC than in sand-LWAC. Overall, the selection range of the dry density of LWAC exists within a certain range according to the designed strength, which can be obtained using the proposed procedure.

Analysis of Dynamic Earth Pressure on Piles in Liquefiable Soils by 1g Shaking Table Tests (1g 진동대 실험을 이용한 액상화 지반에 근입된 말뚝에 작용하는 동적 토압 분석)

  • Han, Jin-Tae;Choi, Jung-In;Kim, Sung-Hwan;Yoo, Min-Taek;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.87-98
    • /
    • 2011
  • In this study, the magnitude and phase variation of dynamic earth pressure acting on a pile in liquefiable soils were analyzed using a series of 1g shaking table tests. In the case of a pile in dry sand, the value of the dynamic earth pressure was the highest near the surface due to the inertia force of the upper load on the pile and it decreased as the depth of the pile got lower. On the other hand, for a pile in liquefiable sand, the magnitude and shape of the dynamic earth pressure were similar to those of the excess pore pressure and was largely affected by the deformation of soils. Furthermore, the inertia force of the upper load and the dynamic earth pressure acted in opposite directions in cases of dry sand and saturated sand where low excess pore pressure had developed. However, after liquefaction, those force components near surface acted unfavorably in the same direction. Finally, the Westergaard’s solution was modified and proposed as a method to evaluate the magnitude of dynamic earth pressure acting on a pile during liquefaction.

The Behavior of Dry Sand under Dynamic Loading -A Study on the Vertical Vibration (건조사질토의 동적거동 -수직진동에 의한 연구)

  • Kim, Su-Il;Jeong, Sang-Seom;An, Yeong-Hun
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.37-48
    • /
    • 1995
  • The dynamic behavior of dry sand under different vibration conditions is studied through laboratory experiments. Sinusoidal and random vibration experiments of sand are carried out in vertical direction under various surcharge loads. Five different sand samples are selected for the azperiment. They are composed of four different -size samples of particles and one sample which is simulated the field condition. In case of sinusoidal vibration, the change in relative density is measured with acceleration levels. To produce an acceleration, the vibration amplitude is maintained within the range of 0.4mm~0.6mm and the vibration frequency is changed within the range of 3Hz~40Hz. In case of random vibration, the combined sinusoidal acceleration is produced by a random vibration generator and the change in relative density is measured by an accelerometer. Based on the experimental results, it is found that the sandy soil is compacted to 94%~99% of relative density by vertical acceleration and the peak acceleration producing the maximum relative density is proportional to the difference between maximum and minimum void ratios. It is also found that the effect of surcharge loading : the greater the surcharge loading, the larger the change in relative density and the greater the acceleration required to change the relative density.

  • PDF

The Fundamental Properties of Alkali-Activated Slag Cement (AASC) Mortar with Different Water-Binder Ratios and Fine Aggregate-Binder Ratios (물-결합재 비와 잔골재-결합재 비에 따른 알칼리 활성화 슬래그 모르타르의 기초특성)

  • Kim, Tae-Wan;Hahm, Hyung-Gil;Lee, Seong-Haeng;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2013
  • This study investigates the fundamental properties of the water-binder (W/B) ratio and fine aggregate-binder (F/B) ratio in the alkali-activated slag cement (AASC) mortar. The W/B ratios are 0.35, 0.40, 0.45, and 0.50, respectively. And then the F/B ratios varied between 1.00 and 3.00 at a constant increment of 0.25. The alkali activator was an 2M and 4M NaOH. The measured mechanical properties were compared, flow, compressive strength, absorption, ultra sonic velocity, and dry shrinkage. The flow, compressive strength, absorption, ultra sonic velocity and dry shrinkage decreased with increases W/B ratio. The compressive strength decreases with increase F/B ratio at same W/B ratio. Also, at certain value of F/B ratio significant increase in strength is observed. And S2 (river sand 2) had lower physical properties than S1 (river sand 1) due to the fineness modulus. The results of experiments indicated that the mechanical properties of AASC depended on the W/B ratio and F/B ratio. The optimum range for W/B ratios and F/B ratios of AASC is suggested that the F/B ratios by 1.75~2.50 at each W/B ratios. Moreover, the W/(B+F) ratios between 0.13 and 0.14 had a beneficial effect on the design of AASC mortar.

Growth of Creeping Bentgrass on Bottom Ash and Dredged up Sand with Four Organic Matter Amendment Rates Under Saline Irrigation Condition (염해 조건에서 유기물이 첨가된 준설모래와 석탄회 토양이 크리핑 벤트그래스의 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.241-252
    • /
    • 2009
  • This study was carried out to check the possibility of substituting bottom ash from the Seosan power plant for sand as growing media for creeping bentgrass (Agrostis stolonifera L.) under saline irrigation condition. Characteristics of growing media were evaluated by using column and leaching method. Creeping bentgrass cv. Pen-A1 was grown in pots with dredged up sand (DS) and bottom ash (BA) media those were amended using 1%, 2%, and 3 % OM rates in a green house. The plants were irrigated with 1.5 $dSm^{-1}$ saline water. Results showed that visual quality, plant height and shoot dry weight from DS treatment were higher than those of BA treatment. Even though BA contained more salts, repeated leaching could decrease ECe efficiently. In case of no OM amendment, the visual quality, plant height and shoot dry weight were similar between in BA and DS. Amendment of 2% OM increased the height of creeping bentgrass in DS, while decreased the plant growth in BA.

Evaluation of Lateral Pile Behavior under Cyclic Loading by Centrifuge Tests (원심모형 실험을 이용한 반복하중을 받는 모노파일 거동 평가)

  • Lee, Myungjae;Yoo, Mintaek;Park, Jeongjun;Min, Kyungchan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.39-48
    • /
    • 2019
  • This study investigated the lateral behavior of monopile embedded in the dry sand through cyclic lateral loading test using a centrifuge test. The sand sample for the experiment was the dry Jumunjin standard sand at 80% relative density and the friction angle of $38^{\circ}$. In the experimental procedure, firstly, it was determined the static lateral bearing capacity by performing the static lateral loading test to decide the cyclic load. This derived static lateral bearing capacity values of 30%, 50%, 80%, 120% were determined as the cyclic lateral load, and the number of cycle was performed 100 times. Through the results, the experiment cyclic p-y curve was calculated, and the cyclic p-y backbone curve by depth was derived using the derived maximum soil resistance point by the load. The initial slope at the same depth was underestimated than API (1987) p-y curves, and the ultimate soil resistance was overestimated than API (1987) p-y curves. In addition, the result of the comparison with the suggested dynamic p-y curve was that the suggested dynamic p-y curve was overestimated than the cyclic p-y backbone curve on the initial slope and soil resistance at the same depth. It is considered that the p-y curve should be applied differently depending on the loading conditions of the pile.

Nesting Site Preference and Hatching Success of the Kentish Plover (Charadrius alexandrinus) in the Nakdong Estuary, Busan, Republic of Korea

  • Hong, Soon-Bok;Higashi, Seigo
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.201-206
    • /
    • 2008
  • This study was conducted to determine clutch size and habitat usage of Kentish plovers (Charadrius alexandrinus) breeding on Sinja-do lslet in the Nakdong Estuary from 22 April to 12 July in 1995 and from 21 April to 20 June in 1996. The Kentish plover preferred grasslands and damp sands to dry dunes as nesting sites. The difference in hatching success among these microhabitats was attributed to high tides, which washed away many nests on damp sands, and strong winds, which frequently shifted the sand to bury eggs on dry dunes. The main mortality factor in grasslands was predation by magpies Pica pica. Each clutch contained one to four eggs, with a mode of three eggs. Hatching success was highest in two-egg clutches and lowest in one- and four-egg clutches. The mean interval for egg laying was 1.8 days between the first and second eggs and 2.1 days between the second and third eggs. The average incubation period was about 24.2 days.

Experimental on the Accuracy of Soil Water Content Measurement Using TDR (TDR을 이용한 토양함수비 측정의 정확성에 대한 실험)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.86-96
    • /
    • 1999
  • Laboratory experiment was performed for the TDR to measure the soil moisture, and the results, were compared with the design water content and the one measured by oven-try method. Sand and kaolinite were used . Varaiables for the experiment were water content (10-50%), void ration (0.7 -1.3), mixture rate of kaolinite (10-30%), and measurement methods (TDR and oven-dry). In all cases , TDR method showed very accurage and reliable results , and average error and error range were far lews than the oven-dry method which is widely used. Considerable error was noticed when water contnet was 50% where saturation was achieved for both methods. Therefore, TDR was thought to be applicable to the field moisture measurement if it is unsaturated. For field scale application of TDR, more research and verification of the accuracy with diverse soil conditions including physical ,chemical and mineral properties are recommended.

  • PDF

Low streee Abrasive Wer mechanism of the Iron/Chromium Hardfacing Alloy (저응력하의 철/크롬 올버레이합금의 긁힘마모기구)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.73-83
    • /
    • 1998
  • This study investigated the relationships between the microstructure and the wear resistance of hardfaced iron/chromium alloys to examine the low stress abrasive wear mechanism. The effects of volume fraction of reinforcing phases(chromium carbide and eutectic phase) were studied. The alloys were deposited once or twice on a mild steel plate using a self-shielding flux cored arc welding process. The low stress abrasion resistance of he alloys against dry sands was measured by the Dry Sand/Ruber Wheel Abrasion Tester (RWAT). The wear resistance of hypoeutectic alloys, below 0.36 volume fraction of chromium-carbide phase (VFC), behaved as Equal Pressure Mode (EPM) for the inverse rule of mixture whereas the wear resistance of hypereutectic alloys, above 0.36 VFC, represented Equal Wear Mode (EWM) for the linear rule of mixture.

  • PDF

Evaluation of Corrosion Protective System for Reinforced Concrete Structures Constructed With Sea Sand (해사 혼입된 콘크리트 구조물의 부식도 평가)

  • 김웅희;홍기섭;오승모;장지원;최응규;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.203-209
    • /
    • 1997
  • An experimental study to evaluate to evaluate corrosion protection systems was undertaken with 44 reinforced concrete slab specimens subjected to cyclic wet and dry saltwater exposure. Corrosion measurements included monitoring macrocell corrosion currents, which are genrerally accecpted in United States practice. Test results indicate that specimens containing 2 kg/$\textrm{m}^3$ of NaCl and exposed to wet(outdoor) and dry(indoor) conditions but not to saltwater show very low values of corrosion measurements regardless applying any corrosion protective systems. Corrosion currents of the specimens exposed at 10 percent of NaCl were higher than that of the specimen exposed at 5 percent of NaCl, so the density of the salt water had an influential effect on the test. For the specimens with water repellent membrane currents kept relatively low numerical values, but test specimens with surface corrosion inhibitor protective system showed high values of corrosion current. It would be expected that evaluation of the corrosion protective systems need long-term measurement.

  • PDF