• Title/Summary/Keyword: dry sand

Search Result 431, Processing Time 0.026 seconds

Temperature Effect on the Compaction Characteristic of Cohesionless Soil (온도에 따른 사질토의 다짐 특성)

  • Lee, Kicheol;Ji, Subin;Kim, Hobi;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.53-62
    • /
    • 2016
  • Among several factors controlling soil compaction, temperature is the factor that varies with region and season. Although earthwork is performed in many projects in the cold regions of the earth, studies on quantifying soil compaction associated with temperature are limited. This experimental study investigates the temperature effect on the soil compaction of cohesionless soil. Jumunjin sand was selected for the tests to represent cohesionless clean sand, which is widely used as an engineering fill at petrochemical projects such as northern Alberta of Canada and Russia. The laboratory test program consists of performing a series of standard proctor tests varying temperature of soil samples ranging from $-10^{\circ}C$ to $17^{\circ}C$. Test results indicate that soil specimen volume expansion occurred from bulking and its range was 0% to 6% with zero above temperature. For increasing temperature from $0^{\circ}C$ to $17^{\circ}C$, water content corresponding to maximum volume (minimum dry unit weight) was decreased and water content corresponding to minimum volume (maximum dry unit weight observed after reaching minimum dry unit weight) was slightly increased with increasing temperature. In zero below temperature, dry unit weight gradually decreased with increasing water content. In this case, no bulking effect was found and soil specimen volume increased due to the higher unit volume of ice.

Evaluation of Accumulated Axial Plastic Strain of Sands under Long-term Cyclic Loading (장기 반복하중을 받는 모래지반의 축방향 누적소성변형률 평가)

  • Seo, Min-Chang;Lee, Si-Hoon;Kim, Sung-Ryul
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Offshore wind turbines have been constructed extensively throughout the world. These turbines are subjected to approximately $10^8$ horizontal load cycles produced from wind, waves, and current during their lifetimes. Therefore, the accumulated displacement of the foundation under horizontal cyclic loading has significant effects on the foundation design of a wind turbine. Akili(2006) and Achmus et al.(2009) performed cyclic triaxial tests on dry sands and proposed an empirical model for predicting the accumulated plastic strain of sands under long-term cyclic loading. In this study, cyclic triaxial tests were performed to analyze the cyclic loading behaviors of dry sands. A total of 27 test cases were performed by varying three parameters: the relative density of the sands, cyclic load level, and confining stress. The test results showed that the accumulated plastic strain increased with an increase in the cyclic load level and a decrease in the relative density of the sand. The confining stress had less effect on the plastic strain. In addition, the plastic strain at the 1st loading cycle was about 57% of the accumulated strain at 1,000 cycles. Finally, the input parameters of the empirical models of Akili(2006) and Achmus et al.(2009) were evaluated by using the relative density of the sand and the cyclic load level.

Effects of surface materials of self-draining beds on cattle behavior in a temperate climate

  • Liu, Ping;Guo, Lulu;Zhang, Fulan;Li, Lin;Mao, Huaming;Gu, Zhaobing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1866-1872
    • /
    • 2020
  • Objective: The objective of the present experiment was to construct self-draining beds to keep surface bedding materials clean and dry for beef cattle comfort in a temperate climate. Methods: In Experiment 1, a self-draining bed was covered with sand at depths of 10 cm (S-10a), 15 cm (S-15), and 20 cm (S-20) respectively. In Experiment 2, self-draining beds of different sizes were covered with 10 cm of sand (S-10b) and wood shavings (WS) at depths of 15 cm and 20 cm (WS-15 and WS-20). Fifteen cattle were engaged to evaluate the comfort of self-draining beds covered with different bedding materials. Results: No cattle lay in the feed alley and cattle spent more time lying on S-10a than S-15 or S-20 in Experiment 1 (p<0.01). No difference in lying time was detected between S-15 and S-20 (p>0.05). In Experiment 2, no cattle selected the feed alley as the lying area. Cattle preferred WS-15 as the lying area and time spent lying on WS-20 was slightly higher than on S-10b (p<0.05). Feces weight was higher in the feed alley than in the different bedding areas in both Experiments 1 and 2 (p<0.01). Conclusion: Sand-bedding depth at 10 cm and WSs at 15 cm above the self-draining bed can provide for the lying comfort of beef cattle. Design of a special feed alley to hold most of the feces to keep bedding materials clean and dry is desirable for organic beef cattle in a loose barn.

Temporal and Spatial Variation of Nutrient Concentrations in Shallow Pore Water in Intertidal Sandflats of Jeju Island (제주도 사질 조간대 공극수중 영양염류의 시·공간적 변화)

  • Hwang, Dong-Woon;Kim, Hyung-Chul;Park, Jihye;Lee, Won-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.704-715
    • /
    • 2012
  • To examine temporal and spatial variation in salinity and nutrients in the shallow pore water of intertidal sandflats, we measured salinity and nutrient concentrations (dissolved inorganic nitrogen [DIN], phosphorus [DIP], and silicate [DSi]) in pore water of the intertidal zone along the coastline of Jeju Island at two and/or three month intervals from May 2009 to December 2010. Geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) in sediment were also investigated. The surface sediments in intertidal sandflats of Jeju Island were mainly composed of sand, slightly gravelly sand and gravelly sand, with a range of mean grain size from 0.5 to 2.5 ${\O}$. Concentrations of IL and COD in sediment were higher along the eastern coast, as compared to the western coast, due to differences in biogenic sediment composition. Salinity and nutrient concentrations in pore water were markedly different across time and space during rainy seasons, whereas concentrations were temporally and spatially more stable during dry seasons. These results suggest that salinity and nutrient concentrations in pore water depend on the advective flow of fresh groundwater. We also observed an imbalance of the DIN/DIP ratio in pore water due to the influence of contaminated sources of DIN. In particular, nutrient concentrations during rainy and dry seasons were characterized by high DIN/DIP ratios (mean-127) and low DIN/DIP ratios (mean-10), respectively, relative to the Redfield ratio (16) in offshore seawater. Such an imbalance of DIN/DIP ratios in pore water can affect the coastal ecosystem and appears to cause outbreaks of benthic seaweed along the coastline of Jeju Island.

The Effect of Soil Texture on Fruits and Growth Properties in Rabbiteye Blueberries

  • Kim, Hong-lim;Kwack, Yong-Bum;Lee, Mock-hee;Chae, Won-Byoung;Hur, Youn-Young;Kim, Jin-Gook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.582-587
    • /
    • 2015
  • This study was conducted to compare the plant growth and fruit quality of blueberries grown in different soil textures of Korea, in order to utilize the results for stable production and soil improvement. Rabbiteye blueberry cultivars 'Tifblue' and 'Baldwin' were planted and grown for three years from 2013 in wagner pot (1 $2000a^{-1}$) in a greenhouse of Namhae Sub-station, Institute of Horticultural and Herbal Science. The plants were grown in four soil textures, sand, sandy loam, loam and silt loam, and nutrient uptake and growth characteristics of plants were investigated. Leaf nitrogen and phosphorus contents of two cultivars grown in different soil textures ranged between 8.6 to $10.5gkg^{-1}$, which was lower than appropriate level for rabbiteye blueberry. However, the contents of potassium, calcium and magnesium in leaves were appropriate levels as $2.29{\sim}3.62gkg^{-1}$, $4.46{\sim}5.46gkg^{-1}$ and $1.45{\sim}2.12gkg^{-1}$, respectively. Nitrogen and phosphate contents in leaves were higher in the two cultivars grown in silt loam soil. There was no significant difference in plant volume and root dry weight among four soil textures in two cultivars. However, dry weight of leaves and branches were highest in loam soil. Fruit production was highest in loam and silt loam soil in two cultivars, showing negative correlation with the amount of sand in soil. However, sugar and acidity showed no correlation with sand content in soil. These results show the limit to the blueberry growth in soil that has no nutrient holding capacity; however, most of Korean soils that have good nutrient holding capacity can produce competitive fruits if the drainage is improved.

STUDIES ON THE SHELLFISH PROCESSING 1. Purification of the Surf Clam Mactra sulcataria REEVE for the Remove of Sand (패류 가공에 관한 연구 1. 개량조개 Mactra Sulcataria REEVE의 토사 배출에 대하여)

  • LEE Eung-Ho;PYEUN Jae-Hyeung;HUR Jong-Wha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 1970
  • A study on the purification of the surf clam Mactra Sulcataria REEVE for the remove of sand and fecal piles was conducted in the laboratory. The sand was mostly distributed around the inhalent and exhalent siphon, mantle and gill, and were also distributed in the digestive tract including the mid-gut gland. The sand particles in the digestive tract were extremely small and their sizes were about $180\times10\mu\;to\;550\times200\mu$. It could be seen that there was little, if any, difference in the rate of sand removal when either the hanging Purification method was used or the method of laying the surf clams in thick or thin layers on the bottom of the experimental vessel was used. The surf clam removed about $50\%$ of its sand during the first hour of purification. The weight of the removed sand and fecal piles on a dry basis reached a constant value after 22 to 26 hours of purification. After 42 hours of Purification, no sand could be seen in the fecal piles. The surf clam removed the sand in its body more rapidly when it was in sea water with the pH of 8.75 than when it was in natural sea water. Also high temperature had a much greater depressing effect upon the removal of sand In the surf clam than did natural sea water. Also low salinity had greater accelerating effect upon the removal of sand in the body than did natural sea water. However the surf clam died when the salinity was $8.19\%_{\circ}$.

  • PDF

Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing (실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향)

  • Moon, Hong Duk;Kim, Jeong Suk;Woo, Seung-Wook;Tran, Dong-Kiem-Lam;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.23-36
    • /
    • 2021
  • In this paper, the effect of shear rate on internal friction angle and unconfined compressive strength of non-cemented and cemented sand was investigated. A dry Jumunjin sand was prepared at loose, medium, and dense conditions with a relative density of 40, 60 and 80%. Then, series of direct shear tests were conducted at shear rates of 0.32, 0.64, and 2.54 mm/min. In addition, a cemented sand with cement ratio of 8% and 12% was compacted into a cylindrical specimen with 50 mm in diameter and 100 mm in height. Unconfined compression tests on the cemented sand were performed with various shear rates such as 0.1, 0.5, 1, 5 and 10%/min. Regardless of a degree of cementation, the unconfined compressive strength of the cemented sand and the angle of internal friction of the non-cemented sand tended to increase as the shear rate increased. For the non-cemented sand, the angle of internal friction increased by 4° at maximum as the shear rate increased. The unconfined compressive strength of the cemented sand also increased as the shear rate increased. However, its increasing pattern declined after the standard shear rate (1 mm/min). A discrete element method was also used to analyze the crack initiation and its development for the cemented sand with shear rate. Numerical results of unconfined compressive strength and failure pattern were similar to the experimental results.

A Study on the Mechanism of Recycled Sand Dry Manufacturing System (순환잔골재 건식생산시스템의 메커니즘에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Young-Bong;Na, Chul-Sung;Lee, Eui-Bae;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.481-484
    • /
    • 2008
  • Recently, the recycling and reusing of construction and demolition waste concrete is urgently required because waste concrete is greatly increased according to the rapid increasing of urban redevelopment project, but the problem solution for demand and supply unbalance of fine aggregate is urgently required because of the restriction of collecting sea fine aggregate. So the utilization of high quality recycled fine aggregate using construction and demolition waste concrete as new fine aggregate for construction industry is urgently. Accordingly, In this study, As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. And it is to examine mechanism of recycled sand dry manufacturing system.

  • PDF

Applicability of Ferro-nickel Slag Sand for Dry Mortar in Floor (페로니켈슬래그 잔골재의 바닥용 건조모르타르 적용성 평가)

  • Cho, Bong-Suk;Kim, Won-Ki;Hwang, Yin-Seong;Koo, Kyung-Mo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Fine aggregate made of ferronickel slag(FNS) is similar to natural fine aggregates and is used in concrete structures both domestically and abroad, but its applications and research areas are limited. In this research, in order to expand the availability of FNS and improve the performance of cement mortar products, the applicability of FNS on dry mortar for floor was examined. Experimental results show that FNS improves flow of cement mortar because it has low absorption rate, spherical shape, and glassy surface. Also, the high stiffness of the FNS aggregate itself is considered to contribute to the improvement of cement mortar quality such as crack reduction by improving the compressive strength and shrinkage reducing. In addition, when FNS fine aggregate is applied, it was possible to secure the impact sound insulation performance equal to or higher than that of mortar using natural fine aggregate.

Determination of Density of Saturated Sand Considering Particle-fluid Interaction During Earthquake (입자-유체 상호거동을 고려한 지진시 포화 모래지반의 밀도 결정)

  • Kim, Hyun-Uk;Lee, Sei-Hyun;Youn, Jun-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.41-48
    • /
    • 2022
  • The mass density of the medium (ρ) used to calculate the maximum shear modulus (Gmax) of the saturated ground based on the shear wave velocity is unclear. Therefore, to determine the mass density, a verification formula and five scenarios were established. Laboratory tests were conducted, and the obtained results were compared. The mass density of the medium was assumed to be saturated (ρsat), wet (ρt), dry (ρdry), and submerged conditions (ρsub), and the Vs ratios of saturated to dry condition were obtained from each case. Assuming the saturated density (ρsat), the Vs ratio was consistent with the value from the resonant column test (RCT) results, and the value from the bender element test results was consistent with the wet density assumption (ρt). Considering the frequency range of earthquakes, it is concluded that applying the saturated density (ρsat) is reasonable as in the RCT results.