DOI QR코드

DOI QR Code

Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing

실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향

  • 문홍득 (경상국립대학교 건설환경공과대학 토목공학과) ;
  • 김정숙 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 우승욱 (경북대학교 공과대학 건설환경에너지공학부) ;
  • ;
  • 박성식 (경북대학교 공과대학 토목공학과)
  • Received : 2021.08.12
  • Accepted : 2021.11.08
  • Published : 2021.11.30

Abstract

In this paper, the effect of shear rate on internal friction angle and unconfined compressive strength of non-cemented and cemented sand was investigated. A dry Jumunjin sand was prepared at loose, medium, and dense conditions with a relative density of 40, 60 and 80%. Then, series of direct shear tests were conducted at shear rates of 0.32, 0.64, and 2.54 mm/min. In addition, a cemented sand with cement ratio of 8% and 12% was compacted into a cylindrical specimen with 50 mm in diameter and 100 mm in height. Unconfined compression tests on the cemented sand were performed with various shear rates such as 0.1, 0.5, 1, 5 and 10%/min. Regardless of a degree of cementation, the unconfined compressive strength of the cemented sand and the angle of internal friction of the non-cemented sand tended to increase as the shear rate increased. For the non-cemented sand, the angle of internal friction increased by 4° at maximum as the shear rate increased. The unconfined compressive strength of the cemented sand also increased as the shear rate increased. However, its increasing pattern declined after the standard shear rate (1 mm/min). A discrete element method was also used to analyze the crack initiation and its development for the cemented sand with shear rate. Numerical results of unconfined compressive strength and failure pattern were similar to the experimental results.

본 논문에서는 실내시험 시 재하속도가 미고결 모래의 내부 마찰각 그리고 고결모래의 일축압축강도에 미치는 영향에 대해 연구하였다. 건조상태의 주문진모래를 상대밀도 40%로 느슨하거나, 60%로 중간 정도 및 80%로 조밀한 상태로 제작한 다음 0.32, 0.64, 2.54mm/min의 재하속도로 직접전단시험을 실시하였다. 또한, 주문진모래에 시멘트 8% 및 12%로 다짐한 직경 50mm, 높이 100mm의 고결 공시체를 일축압축시험 시 0.1, 0.5, 1, 5, 10%/min의 재하속도로 압축하였다. 모래의 고결 여부나 정도에 관계없이 재하속도가 증가할수록 내부 마찰각과 일축압축강도는 증가하는 경향을 보였다. 미고결 모래의 경우 재하속도가 증가할수록 최대 4° 까지 내부 마찰각이 증가하였다. 고결 모래의 경우도 일반적으로 재하속도에 따라 일축압축강도가 증가하였으나, 표준 재하속도인 1%/min를 기준으로 증가하는 경향이 감소하였다. 또한, 개별요소법을 이용하여 고결 모래의 재하속도에 따른 균열 발생 및 발달 과정을 분석하였으며, 해석결과 또한 재하속도가 증가함에 따라 강도가 증가하는 경향을 보였으며 강도가 증가할수록 균열이 뚜렷하게 발달하였다.

Keywords

Acknowledgement

이 논문은 2020-2021년도 경상국립대학교 대학회계 연구비 지원에 의하여 연구되었음.

References

  1. Abrantes, A.E. (2003), Three-dimensional stress-strain behavior of cohesionless material subjected to high strain rate, Ph.D. thesis, Clarkson University.
  2. Andersen, K. H. and Schjetne, K. (2013), "Database of Friction Angles of Sand and Consolidation Characteristics of Sand, Silt, and Clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol.139, No.7, pp.1140-1155. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000839
  3. Bjerrum, L. (1967), "Progressive Failure in Slopes of Overconsolidated Plastic Clay and Clay Shales", Journal of the Soil Mechanics and Foundation Engineering, Vol.93, pp.1-49. https://doi.org/10.1061/JSFEAQ.0001017
  4. Chen, X., Sun, L., Zhao, W., and Zheng, Y. (2020), "Effect of Loading Rate on Tensile and Failure Behavior of Concrete", Sensors, Vol.20, No.21, pp.5994. https://doi.org/10.3390/s20215994
  5. Cruden, D.M. and Varnes, D.J. (1996), "Landslide Types and Processes", Transportation Research Board, U.S. National Academy of Sciences, Special Report, 247: 36-75.
  6. Cundall, P. A. (1971), "A Computer Model for Simulating Progressive, Large-scale Movement in Blocky Rock System", In Proceedings of the International Symposium on Rock Mechanics, 1971.
  7. Dechao, Z. and Yusu, Y. (1991), "Investigation on the Relationship between Soil Shear Strength and Shear Rate", Journal of Terramechanics, Vol.28, No.1, pp.1-10. https://doi.org/10.1016/0022-4898(91)90002-N
  8. Dey, R., Hawlader, B., Phillips, R., and Soga, K. (2013), "Progressive Failure of Slopes with Sensitive Clay Layers", Proc. of the 18th ICSMGE.
  9. Eberhardt, E., Kaiser, P.K., and Stead, D. (2002), "Numerical Analysis of Progressive Failure in Natural Rock Slopes", Proc. of EUROCK 2002.
  10. Gonnerman, H.F. (1925), "Effect of Size and Shape of Test Specimen on Compressive Strength of Concrete", ASTM Proc., Vol.25, pp. 237-250.
  11. Itasca Consulting Group Inc. PFC-Particle Flow Code, Ver. 4.00; Itasca: Minneapolis, MN, USA, 2008.
  12. Khandelwal, M. and Ranjith, P. G. (2013), "Behaviour of Brittle Material in Multiple Loading Rates under Uniaxial Compression", Geotechnical and Geological Engineering, Vol.31, No.4, pp.1305-1315. https://doi.org/10.1007/s10706-013-9651-5
  13. KS, F. (2010), 2405. Standard Test Method for Compressive Strength of Concrete, Korean Agency for Technology and Standards, 1-16.
  14. Ladd, R. S. (1978), "Preparing Test Specimens Using Undercompaction", Geotechnical Testing Journal, Vol.1, No.1, pp.16-23. https://doi.org/10.1520/GTJ10364J
  15. Lee, J., Kim, Y.S., Chae, D., and Cho, W. (2014), "Loading Rate Effects on Strength and Stiffness of Frozen Sands", KSCE Journal of Civil Engineering, Vol.20, No.1, pp.208-215. https://doi.org/10.1007/s12205-015-1417-6
  16. Leroueil, S. (2001), "Natural Slopes and Cuts: Movement and Failure Mechanism", Geotechnique, Vol.51, No.3, pp.197-243. https://doi.org/10.1680/geot.2001.51.3.197
  17. Lupini, J.F., Skinner, A.E., and Vaughan P.R. (1981), "The Drained Residual Strength of Cohesive Soils", Geotechnique, Vol.31, No.2, pp.181-213. https://doi.org/10.1680/geot.1981.31.2.181
  18. Maqsood, Z., Koseki, J., and Kyokawa, H. (2019), "Effects of Loading Rate on Strength and Deformation Characteristics of Gypsum Mixed Sand", In E3S Web of Conferences, Vol.92, pp. 05008.
  19. Martinez, A. and Stutz, H. H. (2019), "Rate Effects on the Interface Shear behaviour of Normally and Overconsolidated Clay", Geotechnique, Vol.69, No.9, pp.801-815. https://doi.org/10.1680/jgeot.17.P.311
  20. Mohammed, A., Rafiq, S., Ghafor, K., Emad, W., Noaman, R., Qasim, A. Y., and Qadir, W. (2021), "Clay Nanosize Effects on the Rheological Behavior at Various Elevated Temperatures and Mechanical Properties of the Cement Paste: Experimental and Modeling", Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-24.
  21. Ohayon, Y. H. and Pinkert, S. (2021), "Experimental Evaluation of the Reference, Shear-rate Independent, Undrained Shear Strength of Soft Clays", International Journal of Geomechanics, Vol.21, No.11, 06021031.
  22. Park, S.S. and Choi, S.-G. (2011), "Effect of Fines on Unconfined Compressive Strength of Cemented Sands", KSCE Journal of Civil and Environmental Engineering Research, Vol.31, No.6C, pp.213-220.
  23. Park, S. S., Kim, K. Y., Choi, H. S., and Kim, C. W. (2009), "Effect of Different Curing Methods on the Unconfined Compressive Strength of Cemented Sand", Journal of the Korean Society of Civil Engineers, Vol.29, No.5C, pp.207-215.
  24. PCA (1995), Soil-cement construction handbook, EP003.10S., Portland Cement Association. Skokie, Ill.
  25. Rankine, K. J., Sivakugan, N., and Cowling, R. (2006), "Emplaced Geotechnical Characteristics of Hydraulic Fills in a Number of Australian Mines", Geotechnical & Geological Engineering, Vol.24, No.1, pp.1-14. https://doi.org/10.1007/s10706-004-1511-x
  26. Saito, R., Fukuoka, H., and Sassa, K. (2006), "Experimental Study on the Rate Effect on the Shear Strength", In: Disaster mitigation of debris flow, slope failure and landslides, Tokyo, Japan, pp. 421-427.
  27. Scaringi, G. and Di Maio, C. (2016), "Influence of Displacement Rate on Residual Shear Strength of Clays", Procedia Earth and Planetary Science 16, pp.137-145. https://doi.org/10.1016/j.proeps.2016.10.015
  28. Simoni, A. and Houlsby, G. T. (2006), "The Direct Shear Strength and Dilatancy of Sand-gravel Mixtures", Geotechnical & Geological Engineering, Vol.24, No.3, pp.523-549. https://doi.org/10.1007/s10706-004-5832-6
  29. Tika, T.E., Vaughan P.R., and Lemos, L.J.L. (1996), Fast Shearing of Pre-existing Shear Zones in Soil, Geotechniqe, Vol.46, No.2, pp.197-233. https://doi.org/10.1680/geot.1996.46.2.197
  30. Yang, E.-I., Choi, J.-C., and Yi, S.-T. (2004), "Effect of Specimen Sizes and Shapes on Compressive Strength of Concrete", Journal of Korea Concrete Institute, Vol.16, No.3, pp.375-382. https://doi.org/10.4334/JKCI.2004.16.3.375
  31. Whitman, R. V. and Healy, K. A. (1962), "Shearing Resistance of Sands during Rapid Loadings", Report No. 9, U.S. Army Engineer Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi.
  32. Xiao, Y., Hou, B., Li, D., and Li, Z. (2018), "Study on Loading Rate Sensitivity Test of Shale Mechanical Properties", In ISRM International Symposium-10th Asian Rock Mechanics Symposium. OnePetro.
  33. Zhang, K., Cao, P., and Bao, R. (2013), "Progressive Failure Analysis of Slope with Strain-softening behavior based on Strength Reduction Method", Journal of Zhejiang University-Science A, Vol.14, No.2, pp.101-109. https://doi.org/10.1631/jzus.a1200121