• Title/Summary/Keyword: dry root yield

Search Result 311, Processing Time 0.03 seconds

Allelopathic Influence of Alfalfa and Vetch Extracts and Residues on Soybean and Corn (알팔파와 베치의 추출물 및 잔유물의 콩과 옥수수에 대한 타감작용)

  • Ki-June Kim;III-Min Chung;Kwang-Ho Kim;Joung-Kuk Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.3
    • /
    • pp.295-305
    • /
    • 1994
  • Greenhouse and laboratory studies were conducted to investigate the allelopathic potential of alfalfa and vetch residues on soybean and corn using various extract concentrations (0, 5, 10, 15 and 20%, w/v) and residue rates (0, 0.25, 0.5, 0.75 and 1%, w/w). Aqueous extracts of alfalfa (Medicago sativa L.) and vetch (Vicia spp.) exhibited an allelopathic effect on soybean and corn seed germination, seedling length and weight. The degree of inhibition significantly increased as the aqueous extract concentration increased. Alfalfa and vetch 20% extracts reduced soybean seed germination, seedling length and weight by 35%, 57%, 32% and 15%, 42%, 25% respectively, when compared to control. Corn germination, seedling length and weight was inhibited by 20%, 23%, 38% by alfalfa and 19%, 18%, 35% by 20% vetch extracts. Alfalfa and vetch extracts inhibited secondary root formation and branching as the extract concentration increased. Alfalfa and vetch 20% extracts inhibited by 41% and 32% secondary root numbers, respectively as compared to control. It was found that the aqueous extract of alfalfa resulted in greater reduction in germination, seedling length and weight of soybean than that of vetch. Alfalfa and vetch 1% residue rate inhibited soybean plant height by 30% and 10%, leaf area by 31% and 23%, and dry weight by 18% and 1%, nodule number by 27% and 20% also. Alfalfa and vetch residue significantly enhanced plant height, leaf area and dry weight of corn. The maximum stimulation occurred with 0.25% and 1% of alfalfa and vetch residue rates, respectively. Plant height, leaf area, and dry weight increased by 23%, 59%, 58% and 17%, 52%, 94% with alfalfa and vetch residues of 0.25% and 1%, respectively. This study demonstrates that there is an allelopathic potential resulting from alfalfa and vetch residues on soybean growth and yield. It also suggests that these residues may affect crop growth and development due to the inhibitory or stimulatory effects of allelochemicals existing in the residue.

  • PDF

Effect of Mg Concentration in Fertigation Solution on Growth and Nutrient Uptake of Cut Chrysanthemum 'Biarritz' (Mg시비농도가 절화국 'Biarritz지 생육과 양분 흡수에 미치는 영향)

  • Kim, Jeong-Man;Choi, Jong-Myung;Chung, Hae-Joon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • This study was carried out to investigate the effect of magnesium concentrations in fertilizer solution on growth and cut flower quality of chrysanthemum 'Biarritz'. The nutrient concentrations in plant tissue and soil solution of root media were also determined. Magnesium deficiency appeared on older leaves with interveinal yellow-green chlorosis. Marginal chlorosis and necrosis also developed on some of older leaves. Elevation of Mg concentration in fertilizer solution increased cut flower weight at harvesting stage resulting in the 8.84g in 1.5mM treatment. Dry weight of whole above ground plant tissue increased as Mg concentrations in fertilizer solution were elevated within the range from 0 to 15mM, but that of 20mM decreased compared to 15mM treatment. The dry weight of 0.5, 1.0 and 1.5mM treatments were 8.42, 8.75 and 8.848 and tissue Mg contents of those based on the youngest fully expanded leaves at harvesting stage were 0.34, 0.53 and $0.71\%$, respectively. Based on dry weight and tissue Mg contents, Mg fertilization to maintain tissue contents higher than $0.64\%$ is necessary to ensure flower quality and yield. By considering the concentration in 15mM treatment, Mg concentration in soil solution of root media should be higher than $3.68mg{\cdot}L^{-1}$ at harvesting stage.

Studies on the effects of radiation from radioisotopes incorporated in plant (IV) -The effects of P-32 application on the growth of buckwheat- (작물에 흡수된 방사성 동위원소의 내부 조사 효과에 관한 연구 (IV) -교맥 생장에 미치는 P-32 시용의 잔유 효과-)

  • 김길환
    • Journal of Plant Biology
    • /
    • v.11 no.1
    • /
    • pp.7-14
    • /
    • 1968
  • Buckwheat seeds produced in previous year (1965) in an experimental pot culture in which nine levels of P-32 ranging from $1.4{\times}10-4 to 3.3{\times}104$\mu$c/pot(as of 27 July 1965)$, with the same specific activity, had been applied to the corresponding pots respectively, were used this year(1996) in water and soil culture as well as in germination test to investigate the feature and extent of possible residual effects of P-32 incorporated upon germination and plant growth, and the following results were obtained: 1. Under the given experimental conditions both stimulative and inhibitory effects of radiation were observed. 2. The germination rate of the seeds was lower at the higher level of P-32 aplication ranging from $3.0{\times}103 to 3.3{\times}104$\mu$c/pot$ and higher at 0.2 $\mu$c P/pot than the control. 3. Among the seeds produced at the higher level of application about 80% was failed to germinate, owing to the radiation injury. The remaining 80% was failed to germinate, owing to the radiation injury. The remaining 80% survived the damaging effect and showed vigorous growth and increased yield. The latter group of seeds thus proved themselves to be more radioresistant than the former. 4. The survived seeds produced later more straw and root on dry weight basis. The higher the level of P-32 applied, the stronger the stimulative effect showed in vegetative growth. 5. No radiation effect on linear growth of the plants was observed in the soil culture. 6. The dry weight of straw produced showed little difference at the moderate range compared with that of control in the soil culture. At high level of application, i.e. over $\mu$c P32/pot, however, the production was increased by 12-37% of control. 7. As for the dry weight of root harvested, the P-32 treatment over 24$\mu$c P32/pot produced 82-155% more than the control, whereas little difference was observed under 2.2$\mu$c P32/pot. 8. The seed production increased in general by the P-32 treatments. Particularly at the moderate level of application the rate of increase amounted to 70% of the control. 9. Those individual plants which survived damaging effects of radiation at the germinating stage shwoed remarkable stimulative effects both in vegetative and in reproductive stage of growth.

  • PDF

Growth, quality, and yield characteristics of transgenic potato (Solanum tuberosum L.) overexpressing StMyb1R-1 under water deficit

  • Im, Ju-Sung;Cho, Kwang-Soo;Cho, Ji-Hong;Park, Young-Eun;Cheun, Chung-Gi;Kim, Hyun-Jun;Cho, Hyun-Mook;Lee, Jong-Nam;Jin, Yong-Ik;Byun, Myung-Ok;Kim, Dool-Yi;Kim, Myeong-Jun
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.154-162
    • /
    • 2012
  • This study was conducted to evaluate agronomic characteristics such as growth, quality, and yields of StMyb1R-1 transgenic potato and also to obtain the basic data for establishing assessment guidelines of transgenic potato. Three transgenic lines (Myb 1, Myb 2, and Myb 8) were cultivated under conventional irrigation, drought condition, and severe drought condition and were analyzed by comparing with wild type, non-transgenic cv. Superior. Myb 2 showed a different flower color from wild type and Myb 1 had much bigger secondary leaflets than wild type. Myb 1 and Myb 2 showed higher $P_2O_5$ content in both top and root zone and longer shaped tubers than wild type. In yield factors, transgenic lines had more tubers than wild type, however their yield decreases were severe because of the poor enlargement of tuber under water deficit condition. This tendency was noticeable in Myb 1 and Myb 2. In TR ratio, chlorophyll content, dry matter rate, and relative water content, there were no big differences between transgenic lines and wild type. Meanwhile, in phenotype, growth, quality, and yield factors, substantial equivalent was confirmed between Myb 8 and wild type. Then, Myb 8 showed the highest marketable tuber yield under conventional irrigation, while showed lower level than wild type under water deficit. Judged by this result, the enhancing droughttolerance by StMyb1R-1 gene might actually not mean the enhancement of photosynthesis or starch accumulation in tuber and, furthermore, not the yield improvement. More detailed research will be required to accurately understand the relationship between StMyb1R-1 and yield factors.

Effects of strong shading on growth and yield in sweet potato (Ipomoea batatas L. LAMK.)

  • Shin, Jong Moo;Song, Seon Hwa;Park, Chan Young;Lee, Hyeon Young;Shim, Sang In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.241-241
    • /
    • 2017
  • Sweet potatoes (Ipomoea batatas (L.) LAMK.,) have been cultivated in Central and South America for about 2000 years and are now grown mainly in Asia and South America. Sweet potatoes are annual in the temperate region, but are classified as perennial in the tropical region. In 2000, the cultivation area of sweet potatoes decreased to about 16,000 ha in 2000, but the cultivation area increased slightly in recent 20,000 ha in Korea. Sweet potatoes do not show higher maximum dry matter production of 120 ~ 150g per plant, and the leaf area index (LAI), which maximizes dry matter production, is known as 3.0 ~ 4.0. As the leaf area increase, the penetration of light into the canopy becomes poor, and sufficient photosynthesis cannot be achieved in the lower leaves, on the other hand the respiration increase, which results in poor dry matter production. This study was conducted to know the responses of sweet potatoes to intensive shading treatment of 80% shading. This experiment was conducted for about 42 days from September 6, 2016 to October 18, 2016 at Gyeongsang National University Experimental Farm, Jinju, Korea. The plant canopy was shaded with black nylon 80% shade cloth suspended 1.2 m above the ground. The photosynthetic rate, stomatal conductance, chlorophyll fluorescence, SPAD and NDVI were measured in 3 replicates every 7 days after shading initiation. After the fresh weight was measured, the samples were dried at $80^{\circ}C$ in a dry oven and measured. By the 80% shading treatment, chlorophyll fluorescence of the treated plants was slightly higher than that of the control, the SPAD value was higher by 3.4 and NDVI value was higher by 0.01. However, photosynthetic rate and stomatal conductance were lower than those of the control. The stomatal conductance of the control were two times higher than those of the control and the photosynthetic rate of the control was four times higher than that of the control. In control, plant showed a tendency to steadily increase in fresh weight and dry weight. However, in the case of shading treatment, the tendency to increase in the fresh and dry weight of tuberous roots was not clear. The fresh weight of shoot showed a tendency to increase steadily while the difference between treatment and control was not large, but tended to decrease after frost.

  • PDF

Effects of Rhizobium Inoculation on the changes of Ureide-N and Amide-N Concentration in Stem and Root exudate of Soybean Plant (대두근류균(大豆根瘤菌) 접종(接種)이 뿌리와 줄기 즙액중(汁液中) Amide-N 및 Ureide-N 농도(濃度)에 미치는 영향(影響))

  • Ko, Jae-Young;Suh, Jang-Sun;Lee, Sang-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.329-336
    • /
    • 1989
  • A series of green house experiment was conducted to find but the effect of fertilizer application and inoculation of rhizobium on the changes of amide-N, ureide-N and $NH_4-N$ concentration in stem and root exudates of soybean plant growth. The results obtained were summarized as follows ; 1. Five strains of indigenous Rhizobium japonicum-nitrogen fixing activity($C_2H_2$-reducing activity) was more than 6.4 to 20.1 nmole/hr/tube-were identified from 37 soil samples in 22 areas of farmers field throughout country. 2. These identified 5 strains of rhizobium were obtained high nitrate reductase but low ammonium and nitrite oxidase activities. Among 5 strains of rhizobium the Rhizobium japonicum RjK-134 was applied for this green house experiment. 3. Dry matter yield was increased by the combination of inoculation of Rhizobium japonicum RjK-134 with no fertilizer and without nitrogen fertilizer application. However, dry matter yield was decreased with application of N and NPK with inoculation of rhizobium. 4. The concentrations of amide-N and ureide-N were increased in xylem sap than that of root exudate and higher concentration was obtained ar 30 days after planting than flowering stage (45 days after planting). 5. The combination of NPK application with inoculation of Rhrizobium japonicum RjK-134 enhanced the increase of amide-N and ureide-N concentration in xylem sap and root exudate. 6. High ammonium-N concentration in xylem sap and root exudate were obtained in combination with without-fertilizer under no inoculation of rhizobium and N and NPK application with inoculation of rhizobium.

  • PDF

Investigation of Rhizome Enlargement Stage and Harvest Time in Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. (지황의 비대시기와 수확시기 구명 연구)

  • Lee, Sang Hoon;Hong, Chung Oui;Lee, So Hee;Koo, Sung Cheol;Hur, Mok;Lee, Woo Moon;Chang, Jae Ki;Han, Jong Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.5
    • /
    • pp.315-321
    • /
    • 2019
  • Background: There have been no studies to date on rhizome development and optimal harvest timing for Rehmannia glutinosa. We therefore, undertook this investigation. Methods and Results: R. glutinosa 'Jihwang 1' was sown in early May and harvested in early November. Growth investigations were carried out at intervals of 10 days between 90 and 180 days after sowing (DAS). Leaf length, leaf width, and number of leaves increased until 150 DAS but decreased after 160 DAS. Rhizome length increased until 120 DAS subsequently, rhizome diameter increased rapidly between 130 and 150 DAS. Thus, the key period for rhizome enlargement in R. glutinosa is thought to be 130 to 150 DAS. Fresh root yield increased sharply from 916 kg/10a to 1,914 kg/10a between 4 and 5 months after sowing (MAS). Dry matter ratio increased gradually from 19.2% at 4 MAS to 24.4% at 6 MAS. Finally, the level of catalpol, a key active ingredient, increased sharply from 0.41% to 4.21% between 5 and 6 MAS. Given the dry matter ratio, catalpol content and yield measured, we suggest that optimal R. glutinosa harvest time is 6 MAS. Conclusions: Based on our results, the key period for rhizome enlargement is 130 to 150 DAS and optimal harvest timing is 6 MAS. We anticipate that these and other results of this study can be used to inform cultivation of R. glutinosa.

Studies on Planting Density and Labor - Saving in Machine Sowing for Astragalus membranaceus Bunge (황기 기계파종시(機械播種時)의 적정(適正) 재식밀도(栽植密度)와 성력효과(省力效果))

  • Kim, Young-Guk;Chang, Young-Hee;Lee, Seung-Tack;Yu, Hong-Seob
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.2
    • /
    • pp.157-162
    • /
    • 1996
  • Experiments were conducted from 1994 to 1995 to understand the effects of the labor-saving seeding and planting density on growth and root yield of Astragalus membranaceus. The drilling seeder reduced seeding time than the hand seeding; It takes 3. 5hrs/l0a to seed by drilling seeder while 33. 0hrs/l0a by hand seeding, which labor reducing rate was 89. 4 %. Emergence rate in the drilling seeder was increased 17% than in the hand seeding, so the root yield were increased 23% to 136. lkg/l0a in using drilling seeder compared to 110. 3kg in hand seeding. On the effect of planting density on the growth characteristics plant height was long in dense planting and stem diameter was thick in spacious planting. Root diameter and dry root weight root per plant were decreased in dense planting and root yield was highest in optimum planting densities $(6\;row\;(15cm)\;{\times}\;10cm)$ in the harvest of 1 year old plants in Astragalus membranaceus. The gross profit were increased 23% to 1,933 thousand won per l0a in the drilling seeder compared to 1,566 thousand won in the hand seeding, also the managing costs were reduced 18% to 406 thousand won per l0a in the drilling seeder than 494 thousand won per l0a in the hand seeding.

  • PDF

Effects of Environmental Substrate Composition on the Growth and Yield of Hydroponically Grown Tomato (토마토 양액재배시 배지 환경조성이 생육 및 생산성에 미치는 영향)

  • Lee, Jaesu;Lee, Hyundong;Lee, Sanggyu;Kwak, Kangsu;Kim, Balgeum;Kim, Taehyun;Baek, Jeonghyun;Rho, Siyoung;Hong, Youngsin
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.729-735
    • /
    • 2019
  • The aim of this study was to determine the effects of different compositions of environmental substrates on hydroponic tomato cultivation. Three different substrates were used in coir chip:dust (v/v=50:50; CP1), coir chip:dust (v/v=80:20; CP2), and rock wool cube with CP2 (CPR). The amount of irrigation during the cultivation period was 190 mL/(plant time) in all substrates. The pH and EC were 5.8-6.2 and 2.6-2.9 dS/m, respectively. The drainage rate in CP1 was 31%, in CP2 was 36%, and in CPR was 29%. The growth of tomato plants in terms of height was higher in CP1 and CPR. The leaf area was greater in CP2. The fresh and dry weights were greater in CP2 and CPR treatments. The net photosynthesis in CP2 ($19.31{\mu}mol\;CO_2/m^2s$) and root activity in CP2 were higher among all three treatments. The soluble solid content of fruit was not significantly different among treatments. The yield per plant in CP2 and CPR treatments was 17% greater than the yield per plant in CP1. Therefore, the most suitable substrate for hydroponic tomato cultivation is the substrate mixed with coir chip:dust (v:v=80:20; CP2), i.e., CPR.

Effects of Young Sprouts Cutting Times and Nitrogen Split Application on Growth and Yield of Atractylodes japonica KOIDZ (삽주의 어린순 채취(採取)회수 및 질소분시(窒素分施)가 생육(生育)과 수양(收量)에 미치는 영향)

  • Jang, Kye-Hyun;An, Dong-Chun;Kim, Dong-Kil
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.3
    • /
    • pp.241-246
    • /
    • 1996
  • This Experiment was conducted to know effect of cutting times and nitrogen split application rates on shoot and root-related characters of Atractylodes japonica. The cutting time was forced on none, once and twice along with three levels of nitrogen split application, all basic 50 -30 -20% and 40 -30 -30%. The plant height declined with increased cutting time and dry matter weight was increased with nitrogen split application under none and once cutting. Average yield of cutted shoot as edible wild plant was 257kg/10a at once cutting condition, but twice cutting condition was little and unfavorable to use edible wild plant because shoot was coarse. Yield 0 dry rhizome was the highest at once shoot cutting und­er 50 -30 -20% nitrogen split application by 471kg/10a.Especially, culture of Atractylodes japonka needed once shoot cutting one the 10th-30th of May.

  • PDF