• Title/Summary/Keyword: dry press

Search Result 250, Processing Time 0.025 seconds

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao;Qi Guo;Zizhong Zhao;Xian Wu;Ying Xing
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.385-401
    • /
    • 2023
  • Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.

Investigation of crack growth in a brick masonry wall due to twin perpendicular excavations

  • Mukhtiar Ali Soomro;Dildar Ali Mangnejo;Naeem Mangi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.251-265
    • /
    • 2023
  • In urban construction projects, it is crucial to evaluate the impacts of excavation-induced ground movements in order to protect surrounding structures. These ground movements resulting in damages to the neighboring structures and facilities (i.e., parking basement) are of main concern for the geotechnical engineers. Even more, the danger exists if the nearby structure is an ancient or masonry brick building. The formations of cracks are indicators of structural damage caused by excavation-induced ground disturbances, which pose issues for excavation-related projects. Although the effects of deep excavations on existing brick masonry walls have been thoroughly researched, the impact of twin excavations on a brick masonry wall is rarely described in the literature. This work presents a 3D parametric analysis using an advanced hypoplastic model to investigate the responses of an existing isolated brick masonry wall to twin perpendicular excavations in dry sand. One after the other, twin perpendicular excavations are simulated. This article also looks at how varying sand relative densities (Dr = 30%, 50%, 70%, and 90%) affect the masonry wall. The cracks at the top of the wall were caused by the hogging deformation profile caused by the twin excavations. By raising the relative density from 30% to 90%, excavation-induced footing settlement is greatly minimized. The crack width at the top of the wall reduces as a result of the second excavation in very loose to loose sand (Dr = 30% and 50%). While the crack width on the top of the wall increases owing to the second excavation in medium to very dense sand (Dr = 70% and 90%).

An experimental investigation on dispersion and geotechnical properties of dispersive clay soil stabilized with Metakaolin and Zeolite

  • Ahmadreza Soltanian;Amirali Zad;Maryam Yazdib;Amin Tohidic
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • Dispersion occurs when clay soil disperses under specific conditions and is rapidly washed away. While there are numerous methods for rectifying it, they are neither cost nor time-effective. The current study used metakaolin and zeolite to improve heavily dispersive clay soil either separately or in combination at 0%, 2%, 4%, 6%, and 8% of the soil weight. After 7 days of curing, the samples were tested to determine the extent of change in the dispersion potential, as well as the improvement of the geotechnical properties of the soil. The results indicated that the addition of 2% zeolite with 6% to 8% metakaolin decreased the dispersion potential considerably. Double hydrometry test findings revealed that the dispersion potential decreased by almost 70% and entered the non-dispersive group; the crumb test also revealed this. Atterberg limits testing indicated a decrease in the plasticity index which reduced the flexibility of the samples. The greatest decrease in PI (67.5%) was achieved with the addition of 8% zeolite plus 8% metakaolin to the soil. The results of density tests revealed that a decrease in the optimal moisture content increased the maximum dry density of soil. This increase in density was a response to the high reactivity of metakaolin with calcium hydroxide and the formation of calcium hydroxide hydrate gel. This eventually caused an increase in the unconfined compressive strength, the greatest increase in strength of about 1.8-fold was observed with a combination of 2% zeolite and 6% metakaolin compared to the unmodified sample.

A study for Beating Filter Press Dewatering Technology (열(熱) 필터프레스 기술(技術)을 통한 슬러지 탈수율(脫水率) 향상(向上)을 위한 연구(硏究))

  • Lee, Jung-Eun;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.38-45
    • /
    • 2006
  • The thermal filter press dewatering(TFPD) technology to improve the dewaterability through increasing the inner vapor pressure, lowering the filtration viscosity and forming the porosity easily within cake as applying the heat at the sludge layer was developed in this study. The hot water with temperature of $95^{\circ}C$ and pressure of $1.2kg_f/cm^2$ was supplied to the heating plate equipped between filter plates with plate size of $470{\times}470mm$ and material of polypropylene. Sludge was dewaterd by supplying pressure of $5kg_f/cm^2$ and then by squeezing pressure of $15kg_f/cm^2$. As a results of estimating the characteristics of thermal dewatering to consider the initial water content and organic content to be influenced by a period of water shortage and rainwater, the dewatered cake water content was about 35 wt% and dewatering velocity was $4DSkg/m^2{\cdot}hr$ under the rainwater period, and the dewatered cake water content was about 50 wt% and dewatering velocity was $1.5DSkg/m^2{\cdot}hr$ in the case of sludge of water shortage season. These results was superior to the mechanical dewatering performance with water content of 70wt% and dewatering velocity of $0.9DSkg/m^2{\cdot}hr$. On the base of the results of TFPD, energy consumpted to deal with DS(Dry Solid) of 1kg was estimated by 300 kJ. It was analyzed that the energy consumption of TFPD was decreased about one third with comparison to the dryer system. Dewatering velocity of this technology was faster than the one of mechanical dewatering equipment and it was easier to product low water content cake. Therefore, this technology was recognized that dewaterability was predominant because of the fast of dewatering velocity and production of low water content cake, and also this known as economical efficiency was excellent because of low energy consumption in comparison with dryer.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Bonding Quality of Adhesives Formulated with Okara Hydrolyzates and Phenol-formaldehyde Resins for Bonding Fancy Veneer onto High-density Fiberboard (두부비지 가수분해물과 페놀수지로 조제한 마루판 화장용 접착제의 접착성능)

  • Yang, In;Ahn, Sye-Hee;Choi, In-Gyu;Choi, Won-Sil;Kim, Sam-Sung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.388-396
    • /
    • 2009
  • In our study, the potential of okara as an ingredient of new bio-based adhesives was investigated for the production of fancy-veneered flooring boards. Okara was hydrolyzed by 1% sulfuric acid solution (AC) and 1% sodium hydroxide solution (AK). Phenol formaldehyde (PF) prepolymers were prepared as a cross-linker of okara hydrolyzates. Then, okara-based adhesive resins were formulated with 35% AC, 35% AK and 30% PF prepolymer on solid content basis. The adhesive resins were applied on high-density fiberboards (HDF) with the spread rate of $300g/m^2$. After that, oak fancy veneers are covered on the HDF, and then pressed with the pressure of $7kg/m^2$ at $120^{\circ}C$. The experimental variables were three mole ratios of formaldehyde to phenol (1.8, 2.1, 2.4), three assembly time (0, 10, 20 min), and two press time (90 sec, 120 sec), respectively. The fancy-veneered high-density fiberboards were tested by dry tensile strength, glueline failure by wetting and formaldehyde emission. Tensile strength of the boards exceeded the requirement of KS standard. The formaldehyde emissions were approached at the E0 level specified in KS standard. Based on these results, okara can be used as an ingredient of environmentally friendly adhesive resin systems for the production of flooring boards.

The Effect of Variation of Assembly Time on Glue Bond Strength (집결시간(集結時間)이 합판접착강도(合板接着强度)에 미치는 영향(影響))

  • Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.118-131
    • /
    • 1982
  • 1. In order to investigate the effect of variation of assembly time on glue bond strength, and to determine the optimum range of assembly time with given glue, this experiment was made at the suggestion of the Wood Technology Laboratory, School of Forestry, Yale University. 2. For this investigation, three-ply-plywoods with 1/22 inch, birch veneer, phenolic resin, and soybean glue were made at the following variation of assembly time, that is, 1, 5, 10, 25, 35, 50, and 70 minutes, under both open and closed assembly manners, and the shear strength test at dry and wet were adoptted. 3. The shear strength and wood failure of each plywood panel constructed at the given assembly time have been illustrated in Tables 1, 2, 3 and 4. It has shown that there is a remarkable tendency, for increasing assembly time to give lower shear strength and wood failure throughout almost all cases. The effective range of assembly time of tested glues in this investigation for both open and closed assembly are summarized in the Table 7. Thus, allowable assembly time for Phenolic resin may be up to 10 minutes under open assembly and up to 50 minutes under closed assembly. For soybean glue, the permissible assembly time may be up to 5 minutes under open assembly and up to 15 minutes under closed assembly. The allowable assembly time for open assembly with the same glue is reduced by approximately one third or more than one third as compared with closed assembly time. This might mean that the closed asembly time for these glues is more practical than the open assembly.

  • PDF

Studies on the Iron Component of Soy Sauce, Bean Paste and Red Pepper Paste -Part I. Iron Content of Soy Sauce- (장류(醬類)의 철분(鐵分)에 관(關)한 연구(硏究) - 제1보(第一報). 간장중의 철분함량(鐵分含量) -)

  • Yoo, Hai-Yul;Park, Yoon-Joong;Lee, Suk-Kun;Son, Cheon-Bae
    • Applied Biological Chemistry
    • /
    • v.22 no.3
    • /
    • pp.160-165
    • /
    • 1979
  • This study was carried out to investigate effects of iron content on the quality of soy sauce, bean paste and red pepper paste, and to elucidate the origin of iron and change of the contents during production processes. For the first step, the iron contents in commercial soy sauce and changes of the contents during brewing process were determined. The results obtained were as follows. 1, Iron contents of raw materials were 108 ppm in soy bean, 133ppm in defatted soy bean, 79 ppm in wheat, 5 ppm in sodium chloride, 58 ppm in seed koji, 300-2000 ppm in spore of Aspergillus oryzae, 240 ppm in wheat gluten, 20 ppm in sodium carbonate (above figures were of dry weight basis), 6 ppm in hydrochloric acid, 18 ppm in caramel and 0.3ppm in brewing water respectively. 2, Iron contents in koji were 200-240 ppm (as dry weight basis) and increased, more or less, in progress of koji-making period. 3. Iron contents in the mashes during fermentation were 40 rpm after 1 month, 43-47 ppm after 3 months and 49-62ppm after 6 months. 4. In chemical soy sauce, the iron content was 159 ppm after hydrolysis of wheat gluten with hydrochloric acid, and 184 ppm after neutralization. 5. Higher iron contents were detected both in fermented and chemical soy sauce when the concentration of total nitrogen increased, but the levels were higher in chemical soy sauce than in fermented one at the same concentration of total nitrogen. 6. In the case of fermented soy sauce, the iron content in the filtrate was decreased by press-filtration, but no significant change was found between before and after heat-sterilization. 7. Iron contents in commercial soy sauce were varied with the producers, however, the average value was 62.7 ppm as calculated as 1.0 percent of total nitrogen. And the average level of iron in home-made soy sauce produced by conventional method was 37.68 ppm.

  • PDF