• Title/Summary/Keyword: dry bridge

Search Result 66, Processing Time 0.023 seconds

Bond Strength of Latex Modified Concretes with Surface Preparation (부착면 특성에 따른 라텍스 개질 콘크리트 부착강도)

  • Kim Sung-Hwan;Kim Kyoun-Jin;Won Chi Moon;Yun Kyong-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.445-448
    • /
    • 2004
  • Recently, bridge deck overlay with latex modified concrete is widely applied in domestic. the capacity of bridge deck overlay depends on bond state on the surface. factors that have an effect on bond state are clean condition on the surface, absence of surface microcracking, absence of laitance, overlay curing. In this study, it is researched that characteristic of bond strength according to moisture condition on the surface and the removal method of concrete. As a result, it shows high bond strength in dry condition when w/c is $31\%$ and in moisture condition when w/c is $38\%$ respectively. characteristic of bond strength according to the removal method of concrete shows high bond strength when using water-jets rather than jackhammers.

  • PDF

Rapid Corrosion Test on Marine Reinforcing Steel (부식촉진에 의한 해양.항만 철근 콘크리트 구조물의 철근 방식에 관한 실험적 연구)

  • 정근성;문홍식;송호진;이상국;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.537-542
    • /
    • 2001
  • Recently long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. It needs to maintain the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steels in concrete structure is the most important cause for the durability of concrete structure which can be controlled by systematic preparatory corrosion protection works for economic and safe infrastructures. Various corrosion protection systems have been used for the corrosion protection of reinforcement steels from detrimental chemical components such as chloride, sulphate and etc. Since chloride can be penetrated into concrete in a variety way, an effective method has to be adopted by taking into full economical aspects and technical data of each protection system. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steel in laboratory concrete specimens which are exposed to cyclic wet and dry saltwater, and then to develop pertinent corrosion protection system, such as corrosion inhibitors and cathodic protection for reinforced concrete bridges exposed to chloride environment. Resistance of various corrosion inhibitors and impressed current system have been experimentally evaluated under severe environmental conditions, and thus effective corrosion protection systems could have been Practically developed for future concrete construction.

  • PDF

Semi-Empirical Prediction of Crack Width of the Strengthened Bridge Deck with External Bonding Plastic (외부부착 보강된 교량 바닥판 균열폭의 반경험적인 예측)

  • 심종성;오홍섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.231-238
    • /
    • 2002
  • Dry shrinkage md temperature change cause to develope concrete bridge decks on main girders have initial unidirectional cracks in longitudinal or transverse direction. As they receive traffic loads, the crack gradually propagate in different directions depending on the concrete dimension and reinforcement ratio. Since existing equations that predict crack width are mostly based on the one directional bond-slip theory, it is difficult to determine the actual crack width of a bridge deck with varying the spacing of rebar or strengthening material and to estimate the improvement rate in serviceability of the strengthened bridge deck. In this study, crack propagation mechanism is identified based on the test results and a new crack prediction equation is proposed for evaluation of serviceability. Although more accurate results are derived using the proposed equation, the extent of error is increased as the strain of the rebar or the strengthening material increases after the yielding of rebar Therefore, further research is required to better predict the crack width after the rebar yields under fatigue loading condition.

Correlation of aerodynamic forces on an inclined circular cylinder

  • Cheng, Shaohong;Tanaka, Hiroshi
    • Wind and Structures
    • /
    • v.8 no.2
    • /
    • pp.135-146
    • /
    • 2005
  • Divergent galloping-like motion of a dry inclined cable has been observed in a limited number of experimental studies, which, due to the uncertainties in its onset conditions, has induced serious concerns in the bridge stay cable design. A series of dynamic and static model wind tunnel tests have been carried out to confirm the existence of the phenomenon and clarify its excitation mechanism. The present paper focuses on exploring the spatial flow structure around an inclined cable. The pattern of resultant aerodynamic forces acting at different longitudinal locations of the model and the spatial correlation of the forces are examined. The results lead one step closer in revealing the physical nature of the phenomenon.

Characteristic Analysis of Condensate Carry-Over According to the Surface Tensions in the Wet and the Dry Conditions on the Fin Surfaces of Heat Exchangers

  • Kim, Byeung-Gi;Lee, Su-Won;Ha, Sam-Chul;Ahn, Young-Chull;Lee, Jae-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1942-1949
    • /
    • 2006
  • Typically, condensate forms as droplets on the fin surfaces and may bridge the space between the fin surfaces. This is due to the dry characteristics inherent to the fin surface. The droplets increase the air-side pressure drop. In the case of high air velocities, these droplets may be blown off the fins and entrained in the air stream. To minimize the formation of condensate droplet, the wet ability of the fins must be improved. The carry-over velocity is affected by fin surface characteristics. To avoid carry-over in the air conditioner having the highest air velocity of 1.5 m/sec, the dynamic contact angle (DCA) should be at least lowly under $60^{\circ}$.

Model experiment for calculation of debris flow's shock force (Use dry materials) (토석류 충격력 산정을 위한 모형실험(건조시료 활용))

  • Kim, Jin-Hwan;Lee, Yong-Soo;Cho, Gyu-Tae;Choi, Won-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1271-1274
    • /
    • 2009
  • One of the landslide, Debris flow means flow mixed of rocks, gravels, sand and soil with water. Debris flow occurred in summer by passed the rainy season and typhoon. Especially, Localized heavy rain derived from abnormal weather caused debris flow independent of season. It is increase to collapse of house, bridge, roads by debris flow but countermeasure studies about occurrence cause, movement pattern, damage scale about debris flow are insufficient. This study performed debris flow model experiment using dry material and calculated shock force predicted debris flow occurrence.

  • PDF

A Fabrication Method of Blade Type Tip for Probe Unit Device (프르브유닛 소자용 블레이드형 팁 제조방법)

  • Lee, Keun-Woo;Lee, Jae-Hong;Kim, Chang-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1436-1440
    • /
    • 2007
  • Beryllium copper has been known to be an important material for the various fields of industry because it can be used for mechanical and electrical/electronic components that are subjected to elevated temperatures (up to $400^{\circ}C$ for short times). Blade type tip for probing the cells of liquid crystal display(LCD) was fabricated using beryllium copper foil. The dry film resist was employed as a mask for patterning of the blade type tip. The beryllium copper foil was etched using hydrochloric acidic iron-chloride solution. The concentration, temperature, and composition ratio of hydrochloric acidic iron-chloride solution affect the etching characteristics of beryllium copper foil. Nickel with the thickness of $3{\mu}m$ was electroplated on the patterned copper beryllium foil for enhancing its hardness, followed by electroplating gold for increasing its electrical conductivity. Finally, the dry film resist on the bridge was removed and half of the nickel was etched to complete the blade type tip.

Strength Development Properties of Latex Modified Concrete For New Concrete Bridge Deck Overlay (신설 콘크리트 교면 덧씌우기를 위한 라텍스 개질 콘크리트의 강도발현 특성)

  • Yun, Kyong-Ku;Kim, Ki-Heoun;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.135-146
    • /
    • 2001
  • This study focused on the investigation of compressive and flexural strengths development, and bond strength of latex modified concrete in order to validate the feasibility of application into concrete bridge deck overlay. Pull-out bond test was used for evaluating the bond strength of latex modified concrete to substrate. The main experimental variables were latex-cement ratio, surface preparation and moisture levels. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased as the latex content increased from 5% to 20%. This might be due to the flexibility latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. In general, increasing the amount of latex will produce concrete with increased tensile and flexural strength and lower modulus of elasticity. Significant improvements in bond strength between new and existing concrete were achieved through the modification of the new concrete bridge deck overlay by latex polymers. The effect of surface preparation on bond of latex modified concrete to conventional concrete were significant at the conditions by sand paper and wire brush. A better bond could be achieved by rough surface rather than smooth. The saturated condition of surface is the most appropriate moisture level among the considered followed by dry condition and wet condition.

  • PDF

Efficiency Study of Measurement Method by Flow Duration (유황별 유속측정 방법에 따른 유효성 연구)

  • Ham, Sang In;Lee, Jeong Hwan;Kim, Dae Young;Ha, Don Woo;Kim, Yoon Soo;Jung, Kang-Young;Lee, Yeong Jae;Kim, Gyeong Hyeon;Kim, Young Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.462-469
    • /
    • 2018
  • There are differences in method and cycle of flow rate survey depending on purpose of the operating department. To verify and use results of flow data according to the purpose, flow data of the directly measured and tele monitoring system were compared to verify validity. Flow measurement in the Ministry of Environment is aimed at setting up a standard flow of target water quality for water quality management and securing flow data of low and normal water level seasons for water quality evaluation. In this study, correlation analysis result ($R^2$) of same time zone data by direct measurement and tele monitoring system (TMS) at Seombon D point, a unit watershed of Seomjin river, for six years ('10 ~ '15) according to implementation of Total Daily Maximum Load (TDML) was wading 0.716, boating 0.962 and on bridge 0.943, and effectiveness of measurement method was verified by characteristics of flow duration as a season of dry and low-water; normal and high water are appropriate for wading, boating, and on bridge respectively. Results revealed it is reasonable to use directly measured results using the wading and boating method for low water level and dry seasons, and TMS data for rainy seasons. It can be used important data for future policy decisions.

Design of array typed inkjet head for line-printing (라인 프린팅을 위한 어레이 방식 잉크젯 헤드 설계)

  • Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.529-534
    • /
    • 2023
  • Although line printing technology is capable of high-speed and large area printing, residual stresses generated during the manufacturing process can deform the feedhole, causing nozzle plate crack or ink leaks. Therefore, in this paper, we propose a new thermal inkjet print head that is robust, reliable and more suitable for line-printing. The amount of deformation of the conventional line printing head measured through the experiment was converted into an equivalent load, and the validity of the load estimation method was verified through FEA analysis. In addition, in order to minimize deformation without increasing the head size, the head structure was designed to increase internal rigidity by reinforcing the unit nozzle with a pillar or support wall or by adding a support beam or dry/wet etched bridge. The FEA analysis results show that the feedhole deformation was reduced by up to 90%, and it is confirmed that the suggested print head with dry etched feedhole bridge operates normally without nozzle plate cracks and ink leakage through fabrication.