• 제목/요약/키워드: dry bridge

검색결과 66건 처리시간 0.028초

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.

브리지 특성이 트래킹에 미치는 영향에 관한 연구 (A Study on the Effect of Bridge's Characteristics on Tracking Phenomena)

  • 지승욱;옥경재;이춘하;이광식
    • 조명전기설비학회논문지
    • /
    • 제22권8호
    • /
    • pp.82-88
    • /
    • 2008
  • 본 논문은 전해액에 의해 양전극 사이에 형성되는 브리지가 트래킹에 미치는 영향을 기술하고 있다. IEC(International Electrotechnical Commission) 60589의 방법으로 만들어진 1, 3, 5[wt%] NaCl 용액을 이용하여 KS C IEC 60112의 전극에서 트래킹 실험을 하였다. 트래킹 진전과정 중에서 브리지가 형성되었을 때의 전압, 전류, 저항 및 열화상을 측정하여 분석하였다. 그 결과 전해액의 전도율이 커짐에 따라 브리지에서 발생되는 줄열도 커졌다. 하지만 전해액의 기화열로 인해 전해액의 끓는점을 넘지는 못했다. 다만, 전해액의 전도율이 커짐에 따라 건조대 형성에 소요되는 시간이 짧아졌다. 따라서 다음 적하까지 보다 긴 시간동안 건조대를 유지함으로써, 방전 기회가 증가하기 때문에 트래킹 진전이 빨라짐을 알 수 있었다.

고속철도 교량상판 슬래브용 고내구/고강도 콘크리트의 수화열 및 건조수축 특성 개선연구 (A Study on Hydration Heat and Dry Shrinkage of High Durability / Strength Concrete for the Bridge Slab of Express Railway)

  • 박정준;백상현;정재헌;박경재;윤원기;엄태선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.725-728
    • /
    • 1999
  • The bridge slab of express railway was designed for high strength concrete (design strength 400kgf/$\textrm{cm}^2$). In case the slab is made with the concrete using type I cement, used much amount of cement can cause cracks through concrete by hydration heat or dry shrinkage. In this study we targeted to solve above problems using type III cement. We could decrease the cement ratio in concrete using type III cement than type I cement. The concrete using type III cement showed good workability and compressive strength, and showed better properties in hydration heat and dry shrinkage than that using type I cement

  • PDF

RF Generator Design for High-quality Power at Light Load

  • Hee Sung Shin;Shin Ui Lee;Kyung Hyun Lim;Euihoon Chung
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.100-106
    • /
    • 2024
  • To generate the plasma required in dry cleaning processes, the plasma chamber must be supplied with a high-quality AC voltage with a voltage of more than 1 kV and a frequency of 400 kHz. In the existing research, many methods to supply high power have been studied, but how to improve the quality of the power for high-quality plasma has been relatively little studied. In this paper, we propose a study to improve the quality of RF power circuit for high-quality plasma generation in dry cleaning method. Existing methods in the environment of full-bridge-based RF power circuits must perform PWM duty control in the light load region. This causes distortions in the waveform, resulting in poor power quality, which directly leads to poor plasma quality. To solve these problems, a half-bridge switching method is proposed and the improvement in waveform quality is verified. To verify the feasibility of the design and control algorithm proposed in this paper, an RF power circuit prototype is fabricated and the proposed design and control method is verified through simulation and actual experiments under dummy load.

  • PDF

스틸 하우스 적용 스틸 스터드의 형상에 따른 단열성능 비교 연구 (A Comparison Analysis on Thermal Performance According to Shape of Steel Stud Applied to Steel House)

  • 장철용;이나은;엄은정
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.241-245
    • /
    • 2009
  • The dry wall using steel stud is used to buildings in the inside and outside of the country because it has the merit that application is possible to various architecture. The purpose of this study is to measure thermal performance of dry wall which uses steel stud transformed one by using measurement equipment to decrease heat bridge of steel stud and ensure heat performance as dry wall. As a comparative performance test result, dry wall which uses steel stud transformed one has a performance enhancement compare with the dry wall using general steel stud.

  • PDF

염해환경하 콘크리트의 철근방식공법 연구 (Research for Corrosion Protection System of Embedded steels for Reinforced Condrete Exposed to Chloride Environments.)

  • 문홍식;류금성;정영수;박희상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.281-284
    • /
    • 1999
  • Bridge structure is known as one of important infrafacilities for comfortable human life. Recent long-span bridges, such as Kwang-Ahn Grand bridge, S대-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the seaside without in-depth consideration of concrete durability problems, It is in particular noted that corrosion of reinforcement steel in concrete is very important for the durability enhancement of concrete structures. The objective of this experimental study is to investigate the corrosion degree of reinforcing steels in concrete specimens which are exposed to cyclic wet and dry saltwaters, and then to develop pertinent corrosion protection system such as rational cover depth, corrosion inhibitors, cathodic system for reinforced concrete bridges exposed to marine environment.

  • PDF

철근부식도 측정 및 방식기법 제시 (Corrosion Protection System and Measurement for Reinforcing Steels in Concrete)

  • 문홍식;이상국;류금성;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.827-832
    • /
    • 2000
  • Bridge structure is known as one of important infrafacilities for comfortable human life. Recent long-span bridges, such as Kwang-Ahn Grand bridge, Seo-hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the seaside without in-depth consideration of concrete durability problem. It is in particular noted tat corrosion of reinforcement steel in concrete is very important for the durability enhancement of concrete structures. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steels in concrete specimens which are exposed to cyclic wet and dry saltwaters, and then to develop pertinent corrosion protection system such as rational cover depth, corrosion inhibitors, cathodic system for reinforced bridges exposed to marine environment.

  • PDF

Structural Behavior of a RC Bridge Slab Retrofitted with Carbon Fiber Sheet under Large Repeated Load

  • Park, Hae-Geun
    • KCI Concrete Journal
    • /
    • 제14권2호
    • /
    • pp.61-68
    • /
    • 2002
  • An experimental investigation on the flexural fatigue behavior of a RC bridge slab retrofitted with Carbon Fiber Sheet (CFS) is presented. The test slab was almost identical to the slab of a highway viaduct in terms of the amount of reinforcement, quality of concrete and thickness of the slab, which was 18cm. Repeated load corresponding to 3.0, 4.5 or 6.0 times of the design load was applied to the test slab. Normal type and high-elastic modulus type of CFS were used for strengthening. The test slabs were loaded in dry or wet condition. Two different types of an-choring system were adapted. Some of the test slabs were damaged by the repeated load and retrofitted by CFS, then loaded again to see the improvement of the fatigue life. Infrared Thermography was also performed to investigate the debonding condition of CFS. From the test results, Carbon Fiber Sheet can be applied to the RC bridge slabs as a feasible retrofitting material.

  • PDF

Experimental study on deformation of concrete for shotcrete use in high geothermal tunnel environments

  • Cui, Shengai;Liu, Pin;Wang, Xuewei;Cao, Yibin;Ye, Yuezhong
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.443-449
    • /
    • 2017
  • Taking high geothermal tunnels as background, the deformation of concrete for shotcrete use was studied by simulating hot-humid and hot-dry environments in a laboratory. The research is made up by two parts, one is the influence of two kinds of high geothermal environments on the deformation of shotcrete, and the other is the shrinkage inhibited effect of fiber materials (steel fibers, polypropylene fibers, and the mixture of both) on the concrete in hot-dry environments. The research results show that: (1) in hot and humid environments, wet expansion and thermal expansion happened on concrete, but the deformation is smooth throughout the whole curing age. (2) In hot and dry environments, the concrete suffers from shrinkage. The deformation obeys linear relationship with the natural logarithm of curing age in the first 28 days, and it becomes stable after the $28^{th}$ day. (3) The shrinkage of concrete in a hot and dry environment can be inhibited by adding fiber materials especially steel fibers, and it also obeys linear relationship with the natural logarithm of curing age before it becomes stable. However, compared with no-fiber condition, it takes 14 days, half of 28 days, to make the shrinkage become stable, and the shrinkage ratio of concrete at 180-day age decreases by 63.2% as well. (4) According to submicroscopic and microscopic analysis, there is great bond strength at the interface between steel fiber and concrete. The fiber meshes are formed in concrete by disorderly distributed fibers, which not only can effectively restrain the shrinkage, but also prevent the micro and macro cracks from extending.

The effects of scour depth and riverbed condition on the natural frequencies of integral abutment bridges

  • Akbari, Reza;Maadani, Saeed;Abedi, Alireza;Maalek, Shahrokh
    • Structural Monitoring and Maintenance
    • /
    • 제6권2호
    • /
    • pp.85-101
    • /
    • 2019
  • The effects of foundation scour depth and riverbed condition on the natural frequencies of a typical cross-river integral abutment bridge have been studied. The conventional operational modal analysis technique has been employed in order to extract the modal properties of the bridge and the results have been used in the Finite Element (FE) model updating procedure. Two tests have been carried out in two different levels of water and wet condition of the riverbed. In the first test, the riverbed was in dry condition for two subsequent years and the level of water was 10 meter lower than the natural riverbed. In the second test, the river was opened to water flow from the upstream dam and the level of water was 2 meter higher than the natural riverbed. The results of these two tests have also been used in order to find to what extend the presence of water flow in the river and saturation of the surrounding soil affect the bridge natural frequencies. Finally, the updated FE model of the bridge has been applied in a series of parametric analyses incorporating the effect of piles' relative scour depth on the bridge natural frequency of the first four vibration modes.