• Title/Summary/Keyword: dry and wet thermal

Search Result 139, Processing Time 0.023 seconds

A Study on the Comparison among Effect of Thermal Dissipation of Backfill Materials for Underground Power Cables (지중송전관로 되메움재의 종류에 따른 열 소산 효과의 비교에 관한 연구)

  • Kim, You-Seong;Park, Young-Jun;Cho, Dae-Seong;Kim, Jae-Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.83-92
    • /
    • 2013
  • Backfill material with thermal resistivity which has $50^{\circ}C$-cm/Watt in wet and $100^{\circ}C$-cm/Watt in dry is requested to improve the power transfer capability for dissipation of heat production in underground power cables. In the field test performed by buried cable backfills, the backfill material developed from this study is compared with river sand and weathered soil (native soil) to investigate the effect of heat transfer in various seasons and locations of thermal sensors. As a result, the developed backfill material is faster approaching yielding temperature (critical heat) than that of river sand and weathered soil, and it has good dissipation capacity rather than other materials by keeping moisture content at dry season.

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

Collection Efficiency of a Mist Eliminator for Wet Flue Gas Desulfurization (습식 배연탈황설비용 습분제거기 포집효율 평가)

  • Kim, Moon-Won;Yook, Se-Jin;Yu, Tae U
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.73-80
    • /
    • 2018
  • Recently, there has been much research on the effect of ultrafine dust on human body with increasing interest in the ultrafine dust. In the Republic of Korea, there are many old thermal power plants, and the amount of ultrafine dust emitted from the thermal power plants is reported to be about 14% of the total amount of domestic fine dust. Therefore, the amount of fine dust from the flue gas desulfurization facility in the thermal power plant needs be reduced. In this study, we made an experimental setup to simulate a flue gas desulfurization facility and analyzed the physical characteristics of the particles passing through a mist eliminator. Experiments were carried out to investigate the collection efficiency of the mist eliminator by using the Arizona Test Dust in a dry environment, and then spraying limestone slurry into the flue gas desulfurization system equipped with the mist eliminator to examine the size and morphology of limestone particles upstream and downstream of the mist eliminator. Cut-off size of the mist eliminator was formed at about $6{\mu}m$. The result of this study is expected to be helpful for designing an electrostatic precipitator for removing particles passing through the mist eliminator.

An Analysis of Thermal Comforts for Pedestrians by WBGT Measurement on the Urban Street Greens (도심 가로 녹음의 습구흑구온도(WBGT) 측정을 통한 보행자 열쾌적성 효과 분석)

  • Ahn, Tong-Mahn;Lee, Jae-Won;Kim, Bo-Ram;Yoon, Ho-Seon;Son, Seung-Woo;Choi, Yoo;Lee, Na-Rae;Lee, Ji-Young;Kim, Hae-Ryung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.22-30
    • /
    • 2013
  • This study aims to measure the thermal comfort effects of urban street trees. As the usual dry bulb air temperature does not indicate properly how the average pedestrian feels the heat of a typical summer day under the strong sunshine, we adopted the Wet Bulb Globe Temperature(WBGT). WBGT involves black globe temperature to measure the direct radiation of sun beams on our bodies, for example our heads. We measured temperatures on very sunny and hot summer days, August 3, 4, and 7, 2012, on the urban streets of Seoul, Korea. Wet bulb, globe, and dry bulb temperatures were measured under direct sunlight from 1 O'clock to 5 O'clock pm. Globe and dry bulb temperatures were measured under street tree shades nearby during the same hours. Then the WBGTs were calculated with the formulae, one for sunny outdoor spaces, and the other for shaded outdoor spaces or indoor. The results are compared with the Korean Standards Association(KS A ISO 7243). The major findings were: 1) On very sunny and hot summer days in Seoul, street tree shades lower the WBGT about 1 to 4 degrees, 2) during the hours of 3 and 4 O'clock in the afternoon, the WBGT under the tree shades are about 3 to 4 degrees lower compared to those under sunshines(approx. 29 to 32 degrees respectively), 3) This difference makes a major thermal comfort for urban pedestrians because senior citizens or weak persons are recommended to move indoor, and even healthy people are recommended stop outdoor sports and take rests in the shades when WBGT is about 32. On the other hand, if the WBGT is around 29, or 3 degrees lower, slower walking, light works or sports are allowable, 4) On site questionnaire survey confirms the thermal comforts under the tree shades, and we even could not get survey subjects on the sunny parts of the sidewalks, 5) We strongly recommend change of guidelines for urban street trees from "one row of street trees on 6m~8m intervals" to "street trees to make continuous shades".

Analysis of Cooling Performance of a Compact Regenerative Evaporative Cooler (밀집형 재생증발식 냉방기의 냉각 성능 분석)

  • Park, Min-Hee;Moon, Seung-Jae;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.316-324
    • /
    • 2016
  • This study investigated a compact regenerative evaporative cooler (REC). To achieve practical applications of an REC, it is very important to consider the compactness as well as the cooling performance. Therefore, a prototype of the REC was designed and fabricated to improve the compactness by reducing the length through the insertion of fins in both the dry and wet channels. The REC prototype was tested in terms of performance evaluation under various operating conditions. An analytical model was also developed to analyze the effects of the axial conduction through the solid body of the REC, the wetness of the surface in the wet channel, and the thermal capacity of the evaporation water flow. The model was validated by comparing the results of a simulation with experimental data. The numerical simulation was based on the model to analyze the performance of the REC and to suggest methods to improve the cooling performance of the REC. Finally, the performance of the present REC was compared to that obtained in previous experimental studies. The results showed that the REC prototype in the present study is the most compact and achieves the highest cooling performance.

Effect of Coagulant Type on the Silica Dispersion and Properties of Functionalized RAFT ESBR Silica Wet Masterbatch

  • Kim, Woong;Ryu, Gyeongchan;Hwang, Kiwon;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.167-175
    • /
    • 2020
  • Various studies have been conducted to improve silica dispersion of silica filled tire tread compounds; among them, silica wet masterbatch (WMB) technology is known to be suitable for manufacturing silica filled compounds that have high silica content and high dispersibility. Till now, the WMB study is focused on the natural rubber (NR) or emulsion styrene-butadiene rubber (ESBR) that does not have a silica-affinity functional group, and a study of NR or ESBR having a silica-affinity functional group is still not well known. Unlike the dry masterbatch technology, the WMB technology can solve the problems associated with the high Mooney viscosity when applied to silica-friendly rubber. However, a coagulant suitable for each functional group has not yet been determined. Therefore, in this study, different coagulant applied silica WMB was prepared by applying calcium chloride, sulfuric acid, acetic acid, and propionic acid by using a carboxyl group functionalized reversible addition fragmentation chain transfer ESBR. The evaluation of the WMB compounds revealed that the calcium chloride added WMB compound showed excellent silica dispersion, abrasion resistance, and rolling resistance.

Experimental study on deformation of concrete for shotcrete use in high geothermal tunnel environments

  • Cui, Shengai;Liu, Pin;Wang, Xuewei;Cao, Yibin;Ye, Yuezhong
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.443-449
    • /
    • 2017
  • Taking high geothermal tunnels as background, the deformation of concrete for shotcrete use was studied by simulating hot-humid and hot-dry environments in a laboratory. The research is made up by two parts, one is the influence of two kinds of high geothermal environments on the deformation of shotcrete, and the other is the shrinkage inhibited effect of fiber materials (steel fibers, polypropylene fibers, and the mixture of both) on the concrete in hot-dry environments. The research results show that: (1) in hot and humid environments, wet expansion and thermal expansion happened on concrete, but the deformation is smooth throughout the whole curing age. (2) In hot and dry environments, the concrete suffers from shrinkage. The deformation obeys linear relationship with the natural logarithm of curing age in the first 28 days, and it becomes stable after the $28^{th}$ day. (3) The shrinkage of concrete in a hot and dry environment can be inhibited by adding fiber materials especially steel fibers, and it also obeys linear relationship with the natural logarithm of curing age before it becomes stable. However, compared with no-fiber condition, it takes 14 days, half of 28 days, to make the shrinkage become stable, and the shrinkage ratio of concrete at 180-day age decreases by 63.2% as well. (4) According to submicroscopic and microscopic analysis, there is great bond strength at the interface between steel fiber and concrete. The fiber meshes are formed in concrete by disorderly distributed fibers, which not only can effectively restrain the shrinkage, but also prevent the micro and macro cracks from extending.

A Study on the Physical Properties of ATY Produced with Nylon FDY and ROY (Nylon FDY와 ROY로 제조한 ATY의 물성에 관한 연구)

  • Kim Seung Jin;Kim Jae Woo;Hong Sang Gi
    • Textile Coloration and Finishing
    • /
    • v.16 no.6
    • /
    • pp.35-43
    • /
    • 2004
  • This study surveys the physical properties of ATY produced with FDY and POY. ATY is made with 70d Nylon FDY and 80d Nylon POY using AIKI air jet texturing machines, respectively. The processing parameters such as air pressure and yam speed are varied, and air pressure is varied ranging with 8.5bar, l0.5bar and 1l.5bar, and yarn speed is varied ranging with 400m/mim, 450m/mim, and 500m/min. The various physical properties of ATY made by POY and FDY denier, wet shrinkage, dry shrinkage, tensile properties, thermal stress and instability are measured and discussed with air pressure and yam speed. The shrinkage simulation of ATY is performed for analysing the process shrinkage on the dyeing and finishing processes.

The Effects of Processing Conditions of Belt Texturing Machine on the DTY Physical Properties

  • Kim, Seung-Jin;Lee, Min-Soo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.39-40
    • /
    • 2003
  • This research surveys the effects of POY physical properties and processing conditions of belt texturing machine to the draw textured yarns. The various textured yarns are made with variation of 1st heater temperature, draw ratio and velocity ratio, and the physical properties of these specimens such as yarn linear density, tensile properties and wet and dry thermal shrinkages are measured and analyzed with POY physical properties and processing conditions of texturing machine. Especially yarn mechanical properties of DTY are analysed with the variation of untwisting tension (T$_2$) on the untwisting part in DTY process and thin and thick DTY yam model are proposed with surging phenomena in DTY process.

  • PDF

A Study on Nucleation, Growth and Shrinkage of Oxidation Induced Stacking Faults (OSF) -Part 1: Nucleation and Thermal Behavior of Oxidation Induced Stacking Faults(OSF) (산화 적층 결합의 생성, 성장 및 소멸에 관한 연구 - 제1부:산화 적층 결함의 생성과 열적 거동)

  • 김용태;김선근;민석기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.759-766
    • /
    • 1988
  • the effect of heat treatment in oxygen ambient on the nucleation and growth of oxidation induced stacking faults(OSF) in n-type(100)silicon wafer has been investigated. The growth of OSF is determind as a function of oxygen concentration in silicon wafer, heat treatment time and temperature, and the activation energy for the growth of OSF can be obtained from the growth kinetics. The activation energies are respectively 2.66 eV for dry oxidation and 2.37 eV for wet oxidation. In this paper, we have also studied the structural feature of OSF with the comparison of optical microscopic morphology and crystalline structure.

  • PDF