• 제목/요약/키워드: dry and wet strength

검색결과 278건 처리시간 0.025초

산부식후 상아질 표면의 습윤 또는 건조가 상아질 결합에 미치는 영향 (EFFECTS OF DENTIN SURFACE WETNESS OR DESICCATION AFTER ACID ETCHING ON DENTIN BONDING)

  • 양원경;권혁춘;손호현
    • Restorative Dentistry and Endodontics
    • /
    • 제25권2호
    • /
    • pp.243-253
    • /
    • 2000
  • The purpose of this in vitro study was to evaluate dentin bonding by two different dentin bonding systems(DBS) using acetone based primer or adhesive [All Bond 2(AB2), One Step(OS)] when they were applied by wet or dry bonding technique. Morphology of resin-dentin interface and hybrid layer thickness(HLT) were investigated using Confocal Laser Scanning Microscope(CLSM) and compared to shear bond strength(SBS). 72 extracted sound human molars were randomly divided into 4 groups of 18 teeth each - Group 1.(AW); AB2 by wet bonding. Group 2(AD); AB2 by dry bonding. Group 3.(OW); OS by wet bonding, Group 4.(OD); OS by dry bonding. In 6 teeth of each group, notch-shaped class V cavities(depth 2mm) were prepared on buccal and lingual surface at the cementoenamel juction(12 cavities per group). To obtain color contrast in CLSM observation, bonding resins of each DBS were mixed with rhodamine B and primer of AB2 was mixed with sodium fluorescein. Prepared teeth of each group were treated with AB2, OS, respectively according to the manufacturer's instructions except for dentin surface moisture treatment after acid etching. In group 1 and 3, after acid etching, excess water was removed with wet tissue(Kimwipes), leaving consistently shiny, visibly hydrated dentin surface. In group 2 and 4, dentin surface was dried for 10 seconds at 1 inch distance. The treated teeth were then packed with composite resin(${\AE}$litefil) and light-cured. 12 microscopic samples($60{\sim}80{\mu}m$ thickness) of each group were obtained after longitudinal section and grinding(Exakt cutting and grinding system). Morphological investigation of resin-dentin interface and HLT measurement using CLSM were done. For measurement of SBS, remaining 12 teeth of each group were flattened occlusally to remove all enamel and grinded to 500 grit SiC(Pedemet Specimen Preparation Equipment). After applying DBS on the exposed dentin surface, composite resin was applied in the shape of cylinder, which has 5mm diameter, 1.5mm thickness, and light cured. SBS was measured using Instron with a crosshead speed of 0.5mm/min. It was concluded as follows, 1. HLT of AW(mean: $2.59{\mu}m$) was thicker than any other group, and followed by AD, OW, OD in descending order(mean; 2.37, 2.28, $1.92{\mu}m$). Only OD had statistically significant differences(p<0.05) to AW and AD. 2. There were intimate contact of resin and dentin at the interface in wet bonding groups, but gaps or irregular interfaces were observed in dry bonding groups. 3. The length, diameter, density of resin tags were various even in the same group without significant differences between groups and lots of adhesive lateral branches were observed. 4. There were no statistically significant difference of SBS between AB2 and OS, but SBS of wet bonding groups were significantly higher(p<0.05) than dry bonding groups. 5. There were no consistent relationships between HLT and SBS.

  • PDF

시료 크기에 따른 CSG재료의 압축강도 및 미세 구조 특성 (Unconfined Compressive Strength and Micro-Structure Properties of CSG Materials Due to Specimen Size)

  • 김영익;김용성
    • 한국농공학회논문집
    • /
    • 제52권4호
    • /
    • pp.93-101
    • /
    • 2010
  • The purpose of this study is to provide basic data for utilization in environment-friendly and economically outstanding CSG construction method by physical and mechanical properties of CSG materials including characteristics of uniaxial compressive strength, microscopic structure and freezing and thawing resistance in accordance with the cement content and curing time of the cement, and size of specimen. In this study, specimens with cement content of 4, 6, 8 and 10% of the total weight were, and, in order to examine the characteristics of the sizes of specimen, specimens with ${\Phi}50{\times}100mm$, ${\Phi}100{\times}200mm$ and ${\Phi}150{\times}300mm$ were manufactured to assess the features including compressive strength, microscopic structure, freezing and thawing, and degree of wet-dry. As results, it was found that with greater size specimen or contents of cement in the specimen, compressive strength, freezing and thawing resistance, and wet-dry resistance increase. Moreover, reactive products for each size of specimen were examined and it was possible to verify that some typical needle structured ettringite was generated due to blending of cement through microscopic structure analysis such as SEM and EDS analysis.

Study on engineering properties of xanthan gum reinforced kaolinite

  • Zhanbo Cheng;Xueyu Geng
    • Computers and Concrete
    • /
    • 제31권6호
    • /
    • pp.501-511
    • /
    • 2023
  • The strengthening efficiency of biopolymer treated soil depends on biopolymer type, concentration ratio, soil type, initial water content, curing time and mixing method. In this study, the physical and mechanical properties of xanthan gum (XG) treated kaolinite were investigated through compaction test, Atterberg limit test, triaxial test and unconfined compression test. The results indicated that the optimum water content (OWC) increased from 30.3% of untreated clay to 33.5% of 5% XG treated clay, while the maximum dry density has a slight increase from 13.96 kg/m3 to 14 kg/m3 of 0.2% XG treated clay and decrease to 2.7 kg/m3 of 5% XG treated clay. Meanwhile, the plastic limit of XG treated clay increased with the increase of XG concentration, while 0.5% XG treated clay can be observed the maximum liquid limit with 79.5%. Moreover, there are the ideal water content about 1.3-1.5 times of the optimum water content achieving the maximum dry density and curing time to obtain the maximum compressive strength for different XG contents, which the UCS is 1.52 and 2.07 times of the maximum UCS of untreated soil for 0.5% and 1% XG treated clay, respectively. In addition, hot-dry mixing can achieve highest UCS than other mixing methods (e.g., dry mixing, wet mixing and hot-wet mixing).

요소수지합판(尿素樹脂合板)의 증량(增量)에 관(關)한 연구(硏究) (A study on the extension of urea-formaldehyde resin plywood)

  • 김용재;김은섭;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제4권1호
    • /
    • pp.28-32
    • /
    • 1976
  • This study was carried out to know the adaptability of barley flour, potato flour and white ash as extender and filler of urea-formaldehyde resin for plywood as a substitute material of wheat flour. The extenders and filler used at this study were extended by several groups of percentages. Shear strength, moisture contents, and specific gravities were compared among tested groups. The results obtained are summarized as follows. 1) Wet and dry shear strength of plywoods extended by 10% barley flour, 30% potato flour, and wheat flours were shown better results than non extended plywoods. 2) There was no significant difference between plywoods extended until 50% barley flours and non extended plywoods. 3) Shear strength of plywoods extended by 50% potato and 100% barley flours were shown worse result than non extended. 4) Dry and wet shear strength of plywoods extended by white ash were shown worst result. 5) The plywoods extended by potato flours were shown not only better shear strength, but also considered more profitable cost for extending.

  • PDF

Sustainable use of OPC-CSA blend for artificial cementation of sand: A dosage optimization study

  • Subramanian, Sathya;Tee, Wei Zhong;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.409-422
    • /
    • 2022
  • The use of calcium sulfoaluminate (CSA) cement as a rapid-hardening cement admixture or eco-friendly alternate for ordinary Portland cement (OPC) has been attempted over the years, but the cost of CSA cement and availability of suitable aluminium resource prevent its wide practical application. To propose an effective ground improvement design in sandy soil, this study aims at blending a certain percentage of CSA with OPC to find an optimum blend that would have fast-setting behavior with a lower carbon footprint than OPC without compromising the mechanical properties of the cemented sand. Compared to the 100% CSA case, initial speed of strength development of blended cement is relatively low as it is mixed with OPC. It is found that 80% OPC and 20% CSA blend has low initial strength but eventually produces equivalent ultimate strength (28 days curing) to that of CSA treated sand. The specific OPC-CSA blend (80:20) exhibits significantly higher strength gain than using pure OPC, thus allowing effective geotechnical designs for sustainable and controlled ground improvement. Further parametric studies were conducted for the blended cement under various curing conditions, cement contents, and curing times. Wet-cured cement treated sand had 33% lower strength than that of dry-cured samples, while the stiffness of wet-cured samples was 25% lower than that of dry-cured samples.

고로슬래그 자극재로써 건식 및 습식 배연탈황석고의 활용가능성 평가 (Use of Flue Gas Desulfurization Gypsum as an Activator for a Ground Granulated Blast Furnace Slag)

  • 이현숙;김지현;이재용;정철우
    • 한국건축시공학회지
    • /
    • 제17권4호
    • /
    • pp.313-320
    • /
    • 2017
  • 화력발전소의 전력 생산을 위한 연료의 연소 시 발생한 황산화물의 제거과정에서 생산되는 배연탈황석고의 경우 현재까지는 적극적인 재활용이 되지 않고 있다. 본 연구는 화력발전소의 배연탈황공정인 건식, 습식공법을 통해 발생된 배연탈황석고의 슬래그 자극재로써의 활용가능성을 연구하기 위하여 일정량의 건식 및 습식 배연탈황석고를 고로슬래그 미분말에 치환하고, 슬래그 페이스트를 제작한 후, 그에 따른 수화반응 특성과 압축강도 특성을 분석해서 슬래그 자극재나 천연석고의 대체재로서 역할을 할 수 있는지 검토하고자 하였다. 본 연구의 결과에 따르면, 건식 배연탈황석고의 경우 별도의 알칼리 자극이 없어도 슬래그를 충분히 자극하는 것으로 보이며, 습식배연탈황석고의 경우 일정수준 이상의 알칼리 자극이 주어져야만 충분한 슬래그 자극효과를 볼 수 있는 것으로 나타났다. 또한 건식과 습식 배연탈황석고를 슬래그 페이스트에 적정량 치환하면 슬래그 페이스트의 압축강도 개선효과를 얻을 수 있는 것으로 나타났다. 추후 추가적인 연구를 통해 치환율에 따른 강도증진 성상을 정량적으로 규명하면 배연탈황석고의 효율적 경제적 재활용이 가능하게 될 것으로 사료된다.

요소-멜라민 공축합 수지의 요소와 멜라민 혼합비율이 합판의 포름알데히드 방출과 접착성에 미치는 영향 (Effects of Mixing Ratio of Urea and Mlelamine on Formaldehyde Emission and Bonding Properties of Plywoods Manufactured with Urea-Melamine Formaldehyde Adhesives)

  • 박헌;강은창;민경희
    • 한국가구학회지
    • /
    • 제11권1호
    • /
    • pp.53-59
    • /
    • 2000
  • This study was to measure formaldehyde emission and bonding strength of plywoods manufactured with urea-melamine formaldehyde adhesives, which were made from three different mixing ratios of urea and melamine, and with four different formaldehyde/urea-melamine molar ratios of 1.0,1.1,1.2 and 1.4. The results were as follows 1. Amount of formaldehyde emission was the lowest at the first method of molar ratio(F/(M+U)) 1.0. Amounts of formaldehyde emission of experimental manufactured adhesives were lower than that of commercial adhesive. 2. Bonding strength of dry specimen was the highest at the first method of molar ratio(F/(M+U)) 1.4. Dry bonding strength of molar ratio(F/(M+U)) 1.4 was similar to commercial adhesive. 3. Bonding strength of wet specimen was the highest at the second method of molar ratio(F/(M+U)) 1.4. Bonding strength of wet specimen used by the third method of molar ratio(F/(M+U)) 1.4 was almost equal to commercial adhesive.

  • PDF

가속열화에 따른 옥외용 epoxy 수지 애자의 전기적특성 평가 (Evaluation on the Electrical Properties of Outdoor Epoxy Resin Insulators under Accelerated Agings)

  • 조한구;김인성;안명상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1360-1363
    • /
    • 1994
  • Epoxy resin insulator have good electrical properties (high electric strength, high resistivity, low dielectric loss) in addition to high mechanical strength, small dimensions and design versatility. Polymer insulator, however, are subjected to aging processes, caused by the surrounding atmosphere, which may lead to degradation of their properties. This paper describes the results of a important study on the artificial pollution test, Weather-Ometer properties and rotating wheel dip test of high voltage different aging insulators which are the most important factors for outdoor uses. Also, the objects of this paper are to (a)result of insulator under dry(wet) flashover voltage, (b)artificial pollution test of salt spay, (c)Accelerated aging test of Weather-Ometer, (d) wet and dry flashover voltage under rotating wheel dip test.

  • PDF

고온다습 조건($82.2^{\circ}C$)에서 2열 볼트 체결 복합재 조인트의 강도에 관한 실험적 연구 (An Experimental Study on the Strength of Two Serial Bolt-Fastened Composite Joints under Elevated Temperature and Humid Condition)

  • 김효진
    • Composites Research
    • /
    • 제22권5호
    • /
    • pp.30-36
    • /
    • 2009
  • 복합재 부품의 전형적인 조인트 형태를 평가하기 위해서, 2열 볼트 체결 탄소섬유강화 복합재의 파손강도와 파손 모드에 대하여 연구를 수행하였다. 연구는 상온과 고온다습 조건에서 적층과 형상을 변수로 실험적으로 수행되었다. 실험결과를 바탕으로 다음과 같은 결론을 얻었다. 하중-변위 선도는 두 가지 형태로 관찰되었으며, 각 파손 모드는 하중-변위 선도로 특징지어진다. 고온다습 조건의 파손형태는 베어링 파손 모드이며, 베어링 파손 모드에서 파손 강도는 유효강성의 영향이 크지 않다고 분석된다. 고온다습 조건의 파손강도 감소는 침투한 수분에 의해 섬유와 모재의 층간 결합부의 물성 저하에 기인한다.

Dentin moisture conditions strongly influence its interactions with bioactive root canal sealers

  • Ozlek, Esin;Gunduz, Huseyin;Akkol, Elif;Neelakantan, Prasanna
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.24.1-24.9
    • /
    • 2020
  • Objectives: It is known that bioactive materials interact with the dentin to undergo biomineralization. The exact role of moisture in this interaction is unknown. Here, we investigate the effects of dentin moisture conditions on the dislocation resistance of two bioactive root canal sealers (MTA Fillapex [Angelus Solucoes Odontologicas] and GuttaFlow BioSeal [Colténe/Whaledent AG]) at 3 weeks and 3 months after obturation. Materials and Methods: Mandibular premolars (n = 120) were prepared and randomly divided into 3 groups based on the dentin condition: group 1, dry dentin; group 2, moist dentin; group 3, wet dentin. Each group was divided into 2 subgroups for root canal filling: MTA Fillapex and GuttaFlow BioSeal. Dislocation resistance was evaluated by measuring the push-out bond strength at 3 weeks and 3 months. Failure modes were examined under a stereomicroscope. Data were statistically analyzed by Kruskal-Wallis test with a significance level of 5%. Results: Moist dentin resulted in higher bond strength values for both materials at both time points. This was significantly higher than wet and dry dentin for both the sealers at the 3 months (p < 0.05), while at 3 weeks it was significant only for GuttaFlow Bioseal. The different moisture conditions demonstrated similar trends in their effects on the dislocation resistance of the 2 root canal sealers. Conclusions: The dentin moisture conditions had a significant impact on its interaction with the bioactive materials tested. Maintaining moist dentin, but not dry or wet dentin, may be advantageous before the filling root canals with bioactive sealers.