• Title/Summary/Keyword: drug-release

Search Result 955, Processing Time 0.027 seconds

Release Properties of BSA from Pectin Heads for Colonic Drug Delivery (Colonic Delivery를 위한 펙틴 비드로부터 BSA의 방출 특성)

  • 최춘순;박상무;송원현;이창문;이기영;김동운;김진철
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.161-164
    • /
    • 2003
  • Oral drug delivery system using pectin gel was developed for colon-targeting of peptide drug. BSA(bovine serum albumin)-loaded pectin and pectin-alginate beads were prepared for drug release properties in vitro. Morphological studies by electron microscopy indicated that pectin and pectin-alginate beads were spherical in shape and approximately 1.0 mm. In order to find the suitable beads, effects of cross-linking agents (calcium chloride or zinc acetate) and drying temperature of beads were investigated. Drug release decreased with concentration of cross-linking agents and drying temperature. For colonic drug delivery from pectin and pectin-alginate beads, pectin degradable enzymes were added at 5 hrs from the beginning of drug release. After addition of enzymes, drug release was suddenly increased against free enzymes. Therefore, pectin and pectin-alginate beads can be promised as useful drug release carriers for colon-targeted delivery.

Improved Dissolution of Poorly Water Soluble TD49, a Novel Algicidal Agent, via the Preparation of Solid Dispersion

  • Lee, Hyoung-Kyu;Cho, Hoon;Han, Hyo-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.3
    • /
    • pp.181-185
    • /
    • 2010
  • The objective of this study was to improve the extent of drug release as well as the dissolution rate of TD49, a novel algicidal agent, via the preparation of solid dispersion (SD). Among the various carriers tested, $Solutol^{(R)}$ HS15 was most effective to enhance the solubility of TD49. Subsequently, SDs of TD49 were prepared by using $Solutol^{(R)}$ HS15 and their solubility, dissolution characteristics and drug crystallinity were examined at various drug-carrier ratios. Solubili ty of TD49 was increased significantly in accordance with increasing the ratio of $Solutol^{(R)}$ HS15 in SDs. Compared to untreated powders and physical mixtures (PMs), SDs facilitated the faster and greater extent of drug release in water. Particularly, SD having the drug-carrier ratio of 1:20 exhibited approximately 90% of drug release within 1 hr. Differential scanning calorimetry (DSC) thermograms and X-ray diffraction (XRD) patterns suggested that SDs might enhance the dissolution of TD49 by changing the drug crystallinity to an amorphous form in addition to the increased solubilization of drug in the presence of $Solutol^{(R)}$ HS15. In conclusion, SD using $Solutol^{(R)}$ HS15 appeared to be effective to improve the extent of drug release and the dissolution rate of poorly water soluble TD49.

Development of Evaluation Method for Drug Release Propreties in Drug Eluting Stent (약물방출스텐트의 약물 방출 특성 평가 방법 개발)

  • Song, J.M.;Baek, H.;Lee, S.Y.;Jang, D.H.;Seo, M.Y.;Park, G.J.;Maeng, Eun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.69-72
    • /
    • 2013
  • The goal of this study is to develop test method for evaluating the drug eluting properties of drug eluting stents (DES). PBS and the detergent solutions, presented by each DES manufacturer, were used for drug release of DES coated with paclitaxel, zotarolimus and everolimus. The drugs which are coating DES were not released by PBS but released by the detergent solutions, finally paclitaxel 83.38%, zotarolimus 103.85% and everolimus 115.78%. It seems that the use of the detergents is necessary in order to release the drugs because those drugs are extremely hydrophobic. In conclusion, using of detergent solutions presented by each manufacturer were suitable for evaluating the drug eluting property of drug eluting stent.

Evaluation of Methyl Methacrylate-Butyl Methacrylate Copolymer Films and Kinetics of Nitrofurazone Release (메칠메타크릴레이트-부틸메타크릴레이트 공중합체 필름의 평가 및 니트로푸라존 방출의 속도론적 연구)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.3
    • /
    • pp.111-126
    • /
    • 1987
  • Methyl methacrylate-butyl methacrylate copolymer (MMBM)-dibutyl phthalate (DBP) films were investigated as a potential topical drug delivery system for the controlled release of nitrofurazone. The kinetic analysis of release data indicated that drug release followed a diffusion-controlled granular matrix model, where the quantity released per unit area is proportional to the square root of time. DBP of several hydrophobic plasticizers selected was found to give the highest release of nitrofurazone. However, hydrophilic plasticizers such as propylene glycol and polyethylene glycol 400 had no controlled release properties and acceptable film formation. The effects of changes in film composition, drug concentration, film thickness, pH of release medium, and temperature on the in vitro release of nitrofurazone were analyzed both theoretically and experimentally. The release rate constant (k') was found to be proportional to DBP content, pH, and the temperature of release medium, but independent of film thickness, and drug concentration in a range of 0.1-0.4% by weight. The linear relationship was found to exist between the log k' and DBP content. The release of nitrofurazone from MMBM-DBP (8:2) films was found to be an energy-linked process. Two energy terms were calculated ; the activation energy for matrix diffusion was 13.45 kcal/mole, and the heat of drug crystal solvation was 27.26-29.34 kcal/mole. Observation of scanning electron micrographs and microscopic photographs showed that the incorporation of DBP in films increased markedly the particle size of nitrofurazone dispersed in the film matrix, comparing with the fine dispersion of nitrofurazone in pure MMBM film alone.

  • PDF

Sustained Release Matrix Tablet Containing Sodium Alginate and Excipients (알긴산나트륨 및 첨가제를 함유한 서방성 매트릭스 정제)

  • Shin, Sung-I;Lee, Beom-Jin;Lee, Tae-Sub;Heo, Bo-Uk;Ryu, Seung-Goo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.187-192
    • /
    • 1996
  • The matrix tablet containing sodium alginate and $CaHPO_4$ can release drugs in a controlled fashion from hydrogel with gelling and swelling due to their interaction as water penetrates the matrices of the tablet. The purpose of this study was to evaluate release characteristics of the matrix tablet varying the amount of sodium alginate, $CaHPO_4$ and other excipients such as chitosan, hydroxypropyl methylcellulose (HPMC) and $Eudragit^{\circledR}$ RS100 in the simulated gastric and intestinal fluid. The practically soluble ibuprofen was used as a model drug. The release profiles of matrix tablet in the gastric fluid as a function of sodium alginate/$CaHPO_4$ ratio was not pronounced because of low solubility of drug and stability of alginate matrices. However, release rate of drug from the matrix tablet in the intestinal fluid was largely changed when sodium alginate/$CaHPO_4$ ratio was increased, suggesting that the ratio of sodium alginate/$CaHPO_4$ was an important factor to control the gelling and swelling of the matrix tablet. The incorporation of other excipients into the matrix tablet also influenced the release rate of drug. The chitosan and HPMC decreased the release rate of drug. No release of drug was occurred when $Eudragit^{\circledR}$ RS100 was added into the tablet. The retarded release of matrix tablet when excipients were added resulted from the hindrance of swelling and gelling of the matrix tablet containing sodium alginate and $CaHPO_4$. The hardness and bulk density of the matrix tablet was not correlated with release rate of drug in the study. From these findings, the ratio of sodium alginate and $CaHPO_4$ in the matrix tablet in addition to incorporation of excipients could be very important to control the release rate of drug in dosage form design.

  • PDF

Ultrasound-Triggered Drug Release of Hydroxyapatite Coated Liposomes (하이드록시아파타이트 코팅 리포솜의 초음파에 의한 약물방출)

  • Cho, Sung Keun;Wee, Tae In;Ha, Jeung;Cho, Sun Hang;Han, Kun;Han, Hee Dong;Shin, Byung Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.493-498
    • /
    • 2013
  • Liposomes, which can deliver payload at target site, have been studied as drug carrier. However, conventional liposomes have limitation for drug release at target site. Therefore, we developed hydroxyapatite (HA) coated ultrasound sensitive liposomes to increase drug release at target site and to enhance stability in blood stream. Control liposome was prepared using hydrogenated soy phosphatidylcholine (HSPC) and cholesterol, and then we assessed HA coating on the surface of control liposomes using calcium acetate, phosphoric acid, and 25% ammonium solution. Doxorubicin was used as a model drug. Size of HA coated liposomes was 120 nm and encapsulation efficiency of doxorubicin in liposomes was up to 95%. Size of HA coated liposomes are not changed in 30% serum solution, however, the control liposomes was 1.4 fold increased. After ultrasound triggered drug release from liposomes, intracellular efficiency of drug released from HA coated liposomes was 3 fold increased compared to control liposomes. In this study, we developed ultrasound sensitive liposomes to enhance drug release, which will be applied in controlled drug release at disease site.

Preparation and Evaluation of Sustained Release Aspirin Microcapsules Using Eudragit $RS^{\circledR}$ Polymer (Eudragit $RS^{\circledR}$를 이용한 지속 방출형 아스피린 마이크로캅셀의 제조 및 평가)

  • Chun, In-Koo;Shin, Dong-Won
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.26-39
    • /
    • 1988
  • Eudragit $RS^{\circledR}$ polymer was used as a wall material for the microencapsulation of aspirin by a phase separation method from chloroform-cyclohexane system with 5% polyisobutylene (PIB) in cyclohexane, and microcapsules obtained were evaluated by particle size analysis, scanning electron microscopy (SEM), drug release and drug stability test. With PIB as a coacervation inducing agent, smooth and tight microcapsules with less aggregation were obtained. Below 1 : 0.3 core-wall ratio, it was possible to coat individual particle. Variation of production conditions showed that increasing the proportion of wall material, particle size and wall thickness of microcapsules and the concentration of paraffin wax in cyclohexane as a sealant sustained drug release rates effectively. SEM confirmed that larger microcapsules after drug release did not rupture into smaller particles but contained a few small pores on the surface. Aspirin release from Eudragit $RS^{\circledR}$ coated microcapsules was independent of the pH of medium, and the mechanism of drug release from non-sealed and sealed microcapsules appeared to fit Higuchi matrix model kinetics. Aspirin in the mixture of aspirin microcapsules and sodium bicarbonate was by far more stable than that in the mixture of pure aspirin and sodium bicarbonate.

  • PDF

Drug Release Characteristics from Chain-extended and Crosslinked Polypropylene Glycol Hydrogels (폴리프로필렌 글리콜 하이드로겔의 가교도 및 고분자사슬 길이조절에 의한 약물방출특성)

  • Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.4
    • /
    • pp.251-256
    • /
    • 1994
  • Polypropylene glycol (M.W. 4000) was crosslinked and chain-extended by using triisocyanate and diisocyanate to synthesize rubbery and water swellable hydrogels. Model drugs, i.e., sodium salicylate and indomethacin were incorporated in the polymer matrices by swelling loading. The drug release rates of drugs could be regulated by varying the degrees of crosslinking and chain-extension. Whereas, no correlation was observed between the drug release profiles and the swelling behaviours of the matrices. The release of drugs from the matrices was considered to be governed by the mobility and mesh size of the polymer chains in the matrices.

  • PDF

Swelling and Drug Release Characteristics of Poly (ethylene oxide)-Poly (methacrylic acid) Interpenetrating Networks (폴리에틸렌 옥사이드-폴리메타크릴산 IPN 공중합체의 팽윤 및 약물 방출특성)

  • Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.3
    • /
    • pp.149-153
    • /
    • 1991
  • Polyethylene oxide (PEO)-polymethacrylic acid (PMAA) interpenetrating polymer networks (IPN) were synthesized via radical polymerization of PMAA and simultaneous crosslinking of PEO using triisocyanate. The equilibrium swelling of PEO-PMAA IPN was determined at different pHs. The swelling of PEO-PMAA IPN, ranged from 20% to 90%, was more sensitive than that of homo polymer PMAA gel This is probably due to protonation and deprotonation of the PMAA network and interpolymer complex formation between PEO and PMAA. Several model drugs were loaded into the IPN matrices and the release mechanisms were investigated. The release of nonionizable drugs such as ftorafur and prednisolone was controlled by swelling of the matrices. However, he release of propranolol, positively charged drug, was more affected by the ionic interaction between the drug and PMAA newtork, and the interpolymer complexation.

  • PDF

Preparation and Properties of Alginate/Polyaspartate Composite Hydrogels

  • Lei, Jing;Kim, Ji-Heung;Jeon, Young-Sil
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • This study examined the swelling behavior and in vitro release of a model drug, tetracycline-HCl, from alginate and alginate-polyaspartate (Alg-PASP) composite gel beads. The alginate and Alg-PASP composite beads were prepared using an ionic crosslinking method with aqueous $Ca^{2+}$. Their microporous morphology was observed by scanning electron microscopy. The swelling ratio of the beads in different media varied according to their composition, cross-linking density ($Ca^{2+}$ concentration), and pH of the aqueous medium. The in vitro release experiment of the tetracycline-HCl encapsulated beads in different media suggests that the release of the drug is governed mainly by the swelling properties of the polymer network. The presence of PASP was found to significantly influence the swelling properties and drug release profile.