• Title/Summary/Keyword: drug-release

Search Result 955, Processing Time 0.03 seconds

Drug Delivery Study on Chitosan Nanoparticles Using Iron Oxide (II, III) and Valine (Iron Oxide(II, III)와 Valine을 이용한 키토산 나노입자의 약물전달 연구)

  • Jang, So-Hyeon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.514-520
    • /
    • 2021
  • A drug delivery system (DDS) based on nanoparticles has been used as a mediator to improve the efficacy of a drug by controlling the amount of drug released and delivering it to a target place. Chitosan, which is non-toxic and biodegradable, has good biocompatibility and excellent adsorption, so it can be used as a drug delivery vehicle. Valine, the essential amino acids, helps muscle growth and tissue recovery, and along with other amino acids. It lowers blood sugar levels and increases growth hormone production. In this study, Valine was adsorbed on magnetic chitosan which is capable of drug absorption, and Fe3O4-Valine CNPs was prepared through cross-linking with TPP (Tripolyphosphate). And then absorption and release trends of valine were investigated with the Fe3O4-Valine CNPs. Fe3O4, which has relatively high stability, is used to make the drug carrier magnetic so that the drug can be delivered to a target place. At optimal conditions, the absorption and release tendency of Fe3O4-Valine CNP was confirmed by analyzing by UV-Vis through the Ninhydrin test which is the color reaction of amino acids and by measuring the size of the particles, it was confirmed that it is suitable as a drug carrier.

Formulation and Evaluation of Transdermal Patch Containing Sibutramine

  • Subedi, Robhash Kusam;Jang, Jun-Ho;Kim, Jae-Il;Park, Young-Joon;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • Sibutramine is a serotonin-norepinephrine reuptake inhibitor indicated for the management of obesity in conjunction with a reduced calorie diet. The oral administration of sibutramine is followed by its dose-related side effects. In this study, sibutramine was formulated into drug in adhesive (DIA) patches in an attempt to overcome these problems. The effects of different formulation variables including pressure-sensitive adhesive (PSA), loading amount of drug, thickness of matrix and enhancer on the skin permeation of the drug were evaluated using excised hairless mouse skin. In the acrylic adhesive with carboxyl functional group, low release of sibutramine was observed due to the strong interaction between carboxyl group of adhesive and amine group of sibutramine. The acrylic adhesive without functional group provided good adhesion force and allowed high drug loading. Changing drug load as well as thickness of the matrix was found to alter permeation rate. $Crovol^{(R)}$ PK40 and $Crovol^{(R)}$ A40, were found to be effective enhancers for sibutramine. The optimized patch contained 20% sibutramine, and 5% $Crovol^{(R)}$ A40 as permeation enhancer, in $80\;{\mu}m$ thick Duro-$Tak^{(R)}$ 87-9301 matrix.

Neurogenic pathways in remote ischemic preconditioning induced cardioprotection: Evidences and possible mechanisms

  • Aulakh, Amritpal Singh;Randhawa, Puneet Kaur;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.145-152
    • /
    • 2017
  • Remote ischemic preconditioning (RIPC) is an intrinsic phenomenon whereby 3~4 consecutive ischemia-reperfusion cycles to a remote tissue (non-cardiac) increases the tolerance of the myocardium to sustained ischemia-reperfusion induced injury. Remote ischemic preconditioning induces the local release of chemical mediators which activate the sensory nerve endings to convey signals to the brain. The latter consequently stimulates the efferent nerve endings innervating the myocardium to induce cardioprotection. Indeed, RIPC-induced cardioprotective effects are reliant on the presence of intact neuronal pathways, which has been confirmed using nerve resection of nerves including femoral nerve, vagus nerve, and sciatic nerve. The involvement of neurogenic signaling has been further substantiated using various pharmacological modulators including hexamethonium and trimetaphan. The present review focuses on the potential involvement of neurogenic pathways in mediating remote ischemic preconditioning-induced cardioprotection.

Sustained Protein Delivery System using Core/shell Nanoparticles

  • Oh, Keun-Sang;Koo, Hyoung-Mo;Yuk, Soon-Hong
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.180-180
    • /
    • 2006
  • A novel preparation method for core/shell nanoparticles with protein drug-loaded lipid core was designed and characterized. The lipid core is composed of lecithin and protein drug and the polymeric shell is composed of Pluronics (poly (ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127 For the application of core/shell nanoparticles as a protein drug carrier, lysozyme and Vascular Endothelial Growth Factor (VEGF) were loaded into the core/shell nanoparticles by electrostatic interaction and the drug release pattern was observed by manipulating the polymeric shell.

  • PDF

Photoresponsive Hydrogels as Drug Delivery Systems

  • Abueva, Celine DG.;Chung, Phil-Sang;Ryu, Hyun-Seok;Park, So-Young;Woo, Seung Hoon
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.6-11
    • /
    • 2020
  • Hydrogels have been developed and used in tissue engineering and regenerative medicine to deliver therapeutics to injured or diseased tissue because of their versatility and properties that can be tailored to match the natural extracellular matrix. Hydrogels can be made with a variety of physical and chemical properties combined with light responsiveness ideal for applications in different fields of medicine that require the spatiotemporal control of therapeutics. Light, as a stimulus, is relatively inexpensive, contact-free, noninvasive with high spatial resolution and temporal control, convenient and easy to use, and allows deep tissue penetration that is relatively harmless. Photoresponsive hydrogels are ideal candidates for on-demand drug delivery systems that are capable of sustained and controlled drug release, minimizing the side effects, and ensuring the activity and efficient delivery of drugs to the target tissue.

Preparation and Release Properties of Acetaminophen Imprinted Functional Starch based Biomaterials for Transdermal Drug Delivery (경피약물전달을 위한 아세트아미노펜 각인 기능성 전분 기반 바이오 소재 제조 및 방출 특성)

  • Kim, Han-Seong;Kim, Kyeong-Jung;Lee, Si-Yeon;Cho, Eun-Bi;Kang, Hyun-Wook;Yoon, Soon-Do
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.299-304
    • /
    • 2021
  • This study focuses on the preparation of acetaminophen (AP) imprinted functional biomaterials for a transdermal drug delivery using mung bean starch (MBS), polyvinyl alcohol (PVA), sodium benzoate (S) as a crosslinking agent, glycerol (GL) as a plasticizer, and melanin (MEL) as a photothermal agent. The prepared AP imprinted biomaterials were characterized using FE-SEM and their physical properties were evaluated. The photothermal effect and AP release property for functional biomaterials were examined with the irradiation of near infrared (NIR) laser (1.5 W/cm2). When the NIR laser was irradiated on functional biomaterials with/without the addition of MEL, the temperature of MEL added biomaterial increased from 25 ℃ to 41 ℃, whereas the biomaterial without MEL increased from 25 ℃ to 28 ℃. Results indicate that there is the photothermal effect of prepared biomaterial with the addition of MEL. Based on the results, AP release properties were evaluated using standard buffer solutions and artificial skin. It was found that AP release rates of MEL added AP loaded biomaterials were 1.2 times faster than those of MEL non-added AP loaded biomaterials when irradiating with NIR laser. We envision that the developed functional biomaterials can be utilized for an acute pain-killing treatment.

The Effect of Rebamipide on Cellular Release of Leukotriene $B_4$ by Helicobacter Pylori (Helicobacter pylori에 의해 호중구 및 위점막 세포로부터 유도되는 Leukotriene $B_4$의 생성에 미치는 Rebamipide의 영향)

  • Lee, Jung-Jin;Han, Bok-Gee;Ro, Jai-Youl;Rhee, Kwang-Ho;Youn, Hee-Shang;Kim, Mal-Nam;Chung, Myung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.825-830
    • /
    • 1997
  • Leukotrienes(LTs) are hewn to act as a mediator provoking tissue response in inflammation. This finding implicates that LTs also play important roles in the pathogenesis of H, pylori-induced gastritis and gastric ulceration. Rebamipide is being currently used as a therapeutics for gastritis and peptic ulcer, but their mechanisms of action have not been known clearly yet. One possibility is that their therapeutic effects are ascribed to interfering with the H. pylori-induced release of LTs from neutrophils and gastric mucosal cells. In the present study, this possibility was tested using $LTB_4$ as the test material in human neutrophils and Kato III cells(gastric adenoma cells as a substitute for gastric mucosal cells). The release of $LTB_4$ from both neutrophils and Kato III cells was time and H. pylori-dose dependent. The maximum release of $LTB_4$ was induced by neutrophils and Kato III cells when these cells incubated with H. pylori $(4.8{\times}10^8\;cells/ml$ for 30min. But in the presence of rebamipide the release of $LTB_4$ from these cells was suppressed in dose dependent manners. The release was completely suppressed at 1.0 mM of rebamipide in neutrophils and 2.0 mM of this drug in Kato III cells, respectively. We also obtained the results that the release of $LTB_4$ was induced by A23187$(Ca^{2+}\;ionophore)$ and the A23187-induced release was also inhibited by rebamipide. It seems that the machanism of action of rebamipide is through its interaction with the level of intracellular $Ca^{2+}$. In view of the roles of $LTB_4$ in inflammatory reaction and the roles of H. pylori in gastritis and peptic ulcer, the effects of this drug observed in this study may contribute to their therapeutic action in these gastric disorders.

  • PDF

Development of Dissolution Test Method for Buflomedil Hydrochloride Tablets and Ticlopidine Hydrochloride Tablets (염산부플로메딜 정과 염산티클로피딘 정의 용출시험법 개발)

  • Lee, Ryun-Kyung;Jeong, Gyeong-Rok;Oh, Hyun-Sook;Shim, Jee-Youn;Suh, Sang-Chul;Lee, Hyo-Jung;Kim, Min-A;Park, Seong-Min;Lee, Kyu-Ha;Sohn, Kyung-Hee;Kim, In-Kyu;Sah, Hong-Kee;Choi, Hoo-Kyun;Cho, Tae-Yong;Hong, Choong-Man
    • YAKHAK HOEJI
    • /
    • v.56 no.4
    • /
    • pp.211-216
    • /
    • 2012
  • Drug dissolution test has been used for the purpose of both quality control of solid oral dosage forms and predicting in vivo drug release profiles. In this study, the dissolution profiles of buflomedil hydrochloride tablets and ticlopidine hydrochloride tablets were investigated according to the "Guidelines on Specifications of Dissolution tests for Oral dosage forms" of Korean Pharmacopoeia (KP). The analytical method using HPLC was validated. The validation was performed in terms of specificity, linearity, accuracy, precision and limit of quantitation.

Sustained Release of Anthocyanin from Porous Poly(lactic-co-glycolide) Microsparticles Developed for the Treatment of Chronic Obstructive Pulmonary Disease

  • Yoo, Na-Young;Baik, Hye-Jung;Lee, Bo-Reum;Youn, Yu-Seok;Oh, Kyung-Taek;Lee, Eun-Seong
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • This study was to fabricate the porous poly(lactide-co-glycolide) (PLGA) microparticles with anthocyanin (as a model antioxidant) for pulmonary drug delivery. The highly porous PLGA microparticles were prepared by the waterin-oil-in-water ($W_1/O/W_2$) multi-emulsion method, followed by the decomposition of ammonium bicarbonate (AB) in $W_1$ phase to the base of ammonia, carbon dioxide and water vapor at $50^{\circ}C$, making a porous structure in PLGA microparticles. Herein, hyaluronate (HA), a viscous polysaccharide, was incorporated in the porous microparticles for sustained anthocyanin release. In in vitro release studies, the anthocyanin release from the porous microparticles with HA continued up to 24 hours, while the porous microparticles without HA released 80 wt.% of encapsulated anthocyanin within 2 hours. In addition, these microparticle are expected to be effectively deposited at a lung epithelium due to its high porosity (low density) and avoid alveolar macrophage's uptake in the lung due to its large particle size. We believe that this system has a great pharmaceutical potential as a long acting antioxidant for relieving the oxidative stress in chronic obstructive pulmonary disease (COPD).

Preparation of Controlled Release Spheronized Beads by a Simple Extrusion and Modified Spheronization Process

  • Lee, Si-Beum;Kim, Min-Soo;Jun, Seoung-Wook;Park, Jeong-Sook;Hwang, Sung-Joo
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.619-625
    • /
    • 2005
  • Beads loaded with the water-soluble drug, phenylpropanolamine HCl (PPA), were prepared using an extruder and double arm counter-rotating roller modified from a traditional pill machine. The mean diameter of the cylindrical rod-like extrudate from the ram extruder was 3 mm; that of the uncoated bead after cutting and spheronization by the modified double arm counter-rotating roller was 3.26~3.28 mm. Although the surface of the beads was moderately rough and irregular, some exhibited hump-shaped protrusions, the sphericity was acceptable (roundness 1.15) and adequate for the subsequent coating process. An increase in mean diameter of the coated beads and improvements in friability and sphericity were observed in proportion to the amount of coating material applied (ethylcellulose or Eudragit?? RS 100). It was also found that the release rate of PPA from the coated beads could be controlled by the amount and type of coating materials applied or with the incorporation of Eudragit ?? RS 100 into the core matrix. Further modifications to the double arm counter-rotating roller, including adjustment of the rotation speed and distance between the rollers, would yield smaller uncoated beads with improved roundness and surface roughness. In conclusion , the present method could be potentially applied to prepare controlled release drug delivery beads or pellet dosage forms.