• Title/Summary/Keyword: drug-release

Search Result 955, Processing Time 0.033 seconds

Physical Characteristics of Sterically Stabilized Liposomes after Lyophilization and Rehydration (입체 구조적으로 안정화된 리포좀의 동결건조에 따른 물리적 특성)

  • Jeon, Ho-Seong;Lee, Sang-Kil;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • Sterically stabilized liposomes (SSL) have been introduced for longer circulation in blood than conventional liposomes (CL). However, there are a couple of problems in SSL preparation due to the instability of phospholipid and the degradation of drug in aqueous conditions. To solve these problems, it is necessary to go through lyophilization process. Therefore, in this study, effects of lyophilization on SSL were evaluated for physical characteristics changes upon rehydration of lyophilized SSL such as the particle size, efficiency of drug entrapment, turbidity and drug release. SSL containing streptozocin, a water-soluble anticancer drug as a model compound, were prepared with DSPC and DSPE-PEG 2000. The size was controlled to 100 nm by extrusion with polycarbonate membrane, and sucrose was used as a cryoprotectant for lyophilization at the 1:3 (lipid:sucrose) ratio. Upon rehydration of lyophilized SSL, the average size was in the range of $50{\sim}200\;nm$ which is adequate for longer circulation in blood, and the encapsulation efficiency was kept as its initial state. Rehydrated SSL were not adsorbed to rat plasma protein and revealed a similar drug release profile to that of fresh SSL before lyophilization. Therefore, lyophilization could be introduced efficiently to overcome aqueous instability problems of SSL.

  • PDF

Enhanced Transdermal Delivery of Pranoprofen from the Bioadhesive Gels

  • Shin, Sang-Chul;Cho, Cheong-Weon
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.928-933
    • /
    • 2006
  • Percutaneous delivery of NSAIDs has advantages of avoiding hepatic first pass effect and delivering the drug for extended period of time at a sustained, concentrated level at the inflammation site that mainly acts at the joint and the related regions. To develop the new topical formulations of pranoprofen that have suitable bioadhesion, the gel was formulated using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The effects of temperature on drug release was performed at $32^{\circ}C$, $37^{\circ}C$ and $42^{\circ}C$ according to drug concentration of 0.04%, 0.08%, 0.12%, 0.16%, and 0.2% (w/w) using synthetic cellulose membrane at $37{\pm}0.5^{\circ}C$. The increase of temperature showed the increased drug release. The activation energy (Ea), which were calculated from the slope of lop P versus 1000/T plots was 11.22 kcal/ mol for 0.04%, 10.79 kcal/mol for 0.08%, 10.41 kcal/mol for 0.12% and 8.88 kcal/mol for 0.16% loading dose from the pranoprofen gel. To increase the drug permeation, some kinds of penetration enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants and the fatty acids were incorporated in the gel formulation. Among the various enhancers used, propylene glycol mono laurate showed the highest enhancing effects with the enhancement factor of 2.74. The results of this study suggest that development of topical gel formulation of pranoprofen containing an enhancer is feasible.

Preparation and Characterization of pH-Sensitive Poly(ethylene oxide) Grafted Methacrylic Acid and Acrylic Acid Hydrogels by ${\gamma}-ray $ Irradiation

  • Lim, Youn-Mook;Lee, Young-Moo;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.327-333
    • /
    • 2005
  • pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with methacrylic acid (MAA) or acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by ${\gamma}-ray $ irradiation (radiation dose: 50 kGy, dose rate: 7.66 kGy/h), grafted by either MAA or AAc monomers onto the PEO hydrogels and finally underwent irradiation (radiation dose: 520 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. Drug-loaded hydrogels were placed in simulated gastric fluid (SGF, pH 1.2) for 2 hr and then in simulated intestinal fluid (SIF, pH 6.8). The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV-Vis spectrophotometer.

Synthesis, Characterization and In Vitro Evaluation of Triptolide-lysozyme Conjugate for Renal Targeting Delivery of Triptolide

  • Zheng, Qiang;Gong, Tao;Sun, Xun;Zhang, Zhi-Rong
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1164-1170
    • /
    • 2006
  • A triptolide-lysozyme (TP-LZM) conjugate was synthesized to achieve renal specific delivery and to reduce the side effects of triptolide. Triptolide was coupled to lysozyme through succinic via an ester bond with an average coupling degree of 1 mol triptolide per 1 mol lysozyme. The lysozyme can specifically accumulate in the proximal tubular cells of the kidney, making it a potential carrier for targeting drugs to the kidney. The structure of triptolide succinate (TPS) was confirmed by IR, $^{1}H-NMR$, MS and UV. The concentrations of triptolide in various samples were determined by reversed-phase high-performance liquid chromatography (HPLC). In this study, the physicochemical and stability profiles of TP-LZM under various conditions were investgated the stability and releasing profiles of triptolide-lysozyme (TP-LZM) under various conditions. In vitro release trails showed triptolide-lysozyme was relatively stable in plasma (less than 30% of free triptolide released) and could release triptolide quickly in lysosome (more than 80% of free triptolide released) at $37^{\circ}C$ for 24 h. In addition, the biological activities of the conjugate on normal rat kidney proximal tubular cells (NRK52E) were also tested. The conjugate can effectively reduce NO production in the medium of NRK52E induced by lipopolysaccharide (LPS) but with much lower toxicity. These studies suggest the possibility to promote curative effect and reduce its extra-renal toxicity of triptolide by TP-LZM conjugate.

Stabilization and Drug Release of Water/Oil/Water Multiple Emulsions : Effect of Glucose in the Outer Aqueous Phase on Osmotic Pressure Reduction (Water/Oil/Water 다중유화의 안정성과 약물 방출: 외부 수상에 포함된 글루코즈에 의한 삼투압 조절 효과)

  • Yoo, Youngtai;Lim, Eun-Jung;Kim, Tae-Yoon;Kim, Dong-Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.715-721
    • /
    • 1997
  • W/O/W multiple emulsions were prepared comprising $MgSO_4$ in the inner aqueous phase as a model drug. The stability and drug release behavior of the multiple emulsions were studied using optical microscopy, viscometry and conductometry. Glucose was introduced in the outer aqueous phase to reduce the osmotic pressure gradient across the oil layer arising from the localization of drug molecules in the inner water phase. It was found that the presence of glucose was effective in stabilization of the multiple emulsions and in control of the release rate of drug more evidently when oil phase was partially hydrophilized with cetostearyl alcohol. This may be attributed to the fact that the migration of water accompanying the hydrophilic surfactant to the inner water phase was limited under a reduced osmotic pressure gradient and thereby slow down the destabilization of the oil/inner water interface.

  • PDF

Synthesis of Poly(DL-lactide-co-glycolide) Copolymers and Its Application (I). Release Characteristics of Clonazepam Using Poly(DL-lactide-co-glycolide) (80:20) Copolymers (Poly(DL-lactide-co-glycolide) 공중합체의 합성과 그 응용 (I). Poly(DL-lactide-co-glycolide)(80:20) 공중합체를 이용한 Clonazepam의 방출특성)

  • Nah, Jae Woon;Lee, Dong Byung;Cho, Chong Su;Jeong, Young Il;Kim, Sung Ho;Kim, Sung Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.92-98
    • /
    • 1998
  • Poly(DL-lactide-co-glycolide) (80:20) was synthesized from DL-lactide and glycolide, and the copolymers was made to micelles containing clonazepam for drug delivery system. The release experiments of the drug from micelles were operated at pH 7.4 phosphate buffer solution $37.0{\pm}0.05^{\circ}C$. The linearly-releasing time ranges of the drug from micelles prepared with the copolymer/drug weight ratio of 20:40, 20:20, and 40:20 (mg) were 50, 41, and 29 days, respectively. So the linearly-releasing time of drug showed the order of micelles 20/40 > micelles 20/20 > micelles 40/20. In short, the formulation allows polymeric micelles to suppress the burst effect of the drug release mechanism, which led to the controlled release pattern and the possibility of drug delivery system for veinous injection.

  • PDF

Cellular activity and guided bone regenerative effect of drug-loaded biodegradable membranes (약물함유 생체분해성 차폐막의 생채활성도 및 골조직 유도재생 효과)

  • Kim, Won-Kyeong;Choi, Sang-Mook;Han, Soo-Boo;Kwon, Young-Hyuk;Chung, Chong-Pyoung;Lee, Seung-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.129-150
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of tetracycline(TC}, flurbiprofen, and PDGF-BB loaded biodegradable membranes on the cell-attachment, the activity of loaded PDGF-BB, in vivo release kinetics, and guided bone regenerative potentials. To evaluate the cell attachment to membranes, the number of gingival fibroblasts attached to each membrane(10% TC, 10% flurbiprofen, $200ng/cm^2$ PDGF-BB loaded membranes, drug-unloaded membrane) was counted by coulter counter and the morphologic pattern of attached cells was examined under SEM. To determine whether the activity of loaded PDGF-BB is sustained, the cellular growth and survival rate of gingival fibroblasts was used for both standard PDGF-BB and loaded PDGF-BB. For evaluation of in vivo release kinetics, drug-loaded membranes were implanted on the dorsal skin of the rats. On 1, 3, 7, 10, 14, 21, and 28 days after implantation, the amount of remaining drugs were measured by HPLC assay for TC and flurbiprofen, and by ${\gamma}-scintillation$ counter for $PDGF-BB^{1125}$. For evaluation of guided regenerative potential, the amount of new bone in the calvarial defect(5mm in diameter) of the rat was measured by histomorphometry 1 and 2 weeks after implantation of membranes. The number of cells attached to the PDGF-BB loaded membrane was largest as compared with the other mernbranes.(p< 0.05) The activity of loaded PDGF-BB was not significantly different from the activity of standard PDGF-BB.(p<0.05) After initial burst release of drug during the first 24 hours, drugs were gradually released for 4 weeks. Especially the release rate of PDGF-BB was nearly constant during 4 weeks. PDGF-BB loaded membranes(200, $400ng/cm^2$) were effective in guided bone regeneration as compared with drug-unloaded membrane. These results implicate that drug-loaded biodegradable membranes might be a useful for guided bone regeneration.

  • PDF

pH-Sensitive Curdlan Acetate Microspheres를 이용한 Indomethacin의 방출 특성

  • Lee, Chang-Mun;Lee, Yeong-Jin;Lee, Gi-Yeong;Choe, Chun-Sun
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.739-742
    • /
    • 2003
  • Curdlan acetate was prepared from hydrophilic curdlan by chemical modification and it was used for pH-sensitive drug delivery system. Curdlan acetate microspheres were prepared by the solvent evaporation method. The size of the curdlan acetate microspheres was below $200\;{\mu}m$. The drug loading efficiency of microspheres was approximately 58.44%. In the swelling test, curdlan acetate microspheres were showed pH-sensitive behavior. The swelling capacity of microspheres at pH 7.4 was much greater than at pH 1.4. Also, Release rate of indomethacin (IND) at pH 7.4 from curdlan acetate microspheres was faster than that at pH 1.4. A pH-sensitive drug release pattern was due to the disintegrating after swelling.

  • PDF

Comparison of the Antihistaminic Activity Between Cetirizine Enantiomers

  • Park-Choo, Hae-Young;Choi, Sun-Ok;Lee, Seok-Ho
    • Biomolecules & Therapeutics
    • /
    • v.9 no.4
    • /
    • pp.282-284
    • /
    • 2001
  • The antiallergic drug, cetirizine, inhibits the histamine release from a rat basophilic leukemia (RBL-2H3) cell line, which is frequently used as a mast cell model. By investigating inhibitory activities of (+)- and (-)-cetirizine in RBL-2H3 cells on the histamine release, we aimed to evaluate the effect of their structual characteristics on the antihistamine activity. The study on RBL-2H3 cell has clearly demonstrated that the (-)-cetirizine is significantly more potent than the (+)- or the racemic cetirizine, although there was no difference in pharmacokinetics between (+)- and (-)-cetirizine in rats.

  • PDF

Fabrication of Biodegradable Polyphosphazene Microparticles by Electrohydrodynamic Atomization (전기분무에 의한 생분해성 폴리포스파젠 마이크로입자의 제조)

  • Xue, Li-Wei;Cai, Qing;Ryu, Seung-Kon;Jin, Ri-Guang
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.424-430
    • /
    • 2011
  • Biodegradable poly[(glycine ethyl ester)-(phenylalanine ethyl ester) phosphazene](PGPP) microparticles were fabricated by electrohydrodynamic atomization to apply drug release test. Atomization parameters such as applied voltage, polymer concentration, and molecular weight were investigated to inspect their effects on the size and morphology of microparticles. The average diameter of PGPP microparticles decreased as increasing applied voltage and solution flow rate. Dichloromethane/dioxane mixture shows better results for the preparation of microparticles than single solvent owing to the different PGPP solubility in solvent. Blending PGPP polymers with proper molecular weights not only favored the production of spherical PGPP microparticles via electrohydrodynamic atomization, but also provided a way to adjust drug (rifampicin) release behavior. Drug-loaded biodegradable polyphosphazene microspheres can be fabricated via electrohydrodynamic atomization, which has potential use in biomedical applications.