• Title/Summary/Keyword: drug addition

Search Result 1,562, Processing Time 0.028 seconds

Carbon-Nanotube-Modified Glass Micropipette for Simultaneous Drug Injection and Neural Monitoring

  • Shin, Jung Hwal;Kim, Geon Hwee;Kim, Intae;Lim, Hoon;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.309-314
    • /
    • 2013
  • Glass micropipettes are widely used for drug injection in neurological studies. To enable these devices to monitor neural activity simultaneously with drug injection, an electrode such as Ag/AgCl must be located near or inserted into the glass micropipette to detect electrical signals in vivo. Here, we report carbon-nanotube-modified glass micropipettes (CNGs), which have excellent electrochemical properties such as low impedance and large electrochemical surface area suited for neural recording. In addition, using a standard pressure pump, CNGs can deliver drugs to the target region without bending. Because they are based on standard glass micropipettes, CNGs can readily be applied to traditional equipment, creating opportunities to monitor precisely the drug-injected area.

Smart syringe pumps for drug infusion during dental intravenous sedation

  • Seo, Kwang-Suk;Lee, Kiyoung
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2016
  • Dentists often sedate patients in order to reduce their dental phobia and stress during dental treatment. Sedatives are administered through various routes such as oral, inhalation, and intravenous routes. Intravenous administration has the advantage of rapid onset of action, predictable duration of action, and easy titration. Typically, midazolam, propofol or dexmedetomidine are used as intravenous sedatives. Administration of these sedatives via infusion by using a syringe pump is more effective and successful than infusing them as a bolus. However, during intravenous infusion of sedatives or opioids using a syringe pump, fatal accidents may occur due to the clinician's carelessness. To prevent such risks, smart syringe pumps have been introduced clinically. They allow clinicians to perform effective sedation by using a computer to control the dose of the drug being infused. To ensure patient safety, various alarm features along with a drug library, which provides drug information and prevents excessive infusion by limiting the dose, have been added to smart pumps. In addition, programmed infusion systems and target-controlled infusion systems have also been developed to enable effective administration of sedatives. Patient-controlled infusion, which allows a patient to control his/her level of sedation through self-infusion, has also been developed. Safer and more successful sedation may be achieved by fully utilizing these new features of the smart pump.

Effect of Vitamin A and $B_2$ Derivatives on Aminopyrine Demethylase Activity (비타민 A 및 $B_2$ 유도체의 Aminopyrine Demethylase 활성도에 대한 영향)

  • 이향우
    • YAKHAK HOEJI
    • /
    • v.28 no.1
    • /
    • pp.53-59
    • /
    • 1984
  • Drug-metabolizing system which has the important role in drug metabolism is localized in smooth endoplasmic reticulum of hepatocytes and is composed of NADPH, NADPH-cytochrome $P_{450}$ reductase, cytochrome $P_{450}$ and others. It is well known that the enzyme system is induced by phenobarbital and methylcholanthrene. Lipid peroxidation is reaction of oxidative deterioration of polyunsaturated lipids. Formation of lipid peroxides in liver microsome has been found to produce degradation of phospholipid, which are major components of microsomal membrane. The relationship between the formation of lipid oxides and the activities of drug-metabolizing enzyme in the liver of rats was reported by several investigators. In this study the effect of riboflavin tetrabutylate, an antioxidant on lipid peroxidation, specially the relationship between lipid peroxidation and drug-metabolizing enzyme system was investigated. In addition the effect of vitamin A derivatives, such as retinoic acid and retinoid on the enzyme was also observed. Results are summarized as followings. 1) The pretretment with riboflavin tetrabutylate inhibited completely the lengthened sleeping time due to $CCl_{4}$ treatment. 2) The increase of TBA value was prevented by the pretreatment with riboflavin tetrabutylate. 3) The pretreatment with riboflavin tetrabutylate also prevented the decrease of drug-metabolizing enzyme caused by $CCl_{4}$. 4) Both retinoic acid and retinoid remarkably decreased the activity of aminopyrine demethylase. Pretreatment of riboflavin tetrabutylate, however, prevented inhibitory effect of retinoic acid on the enzyme activity.

  • PDF

Market Trend and Current Status of the Research and Development of Antibody-Drug Conjugates

  • Kwon, Sun-Il
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.121-133
    • /
    • 2021
  • Antibody-drug conjugates (ADCs) are drawing much interest due to its great potential to be one of the important options in cancer treatments. ADCs are acting like a magic bullet which delivers cytotoxic drugs specifically to cancerous cells throughout the body, thus attacks these cells, while not harming healthy cells. ADCs are complex molecules that are composed of an antibody having targeting capability and linked-payload or cytotoxic drug killing cancerous cells. The key factors of the success in the development of ADC are selection of appropriate antibody, cytotoxic payload and linker for conjugation. Recently there was considerable progress in ADCs development, and a large number of ADCs gained US FDA approval. About 80 new ADCs are under active clinical studies. In this review we present a brief introduction of the US-FDA approved ADCs and global situation in the clinical studies of ADC pipelines. We address an overview on each component of an ADC design such as target antigens, payloads, linkers, conjugation methods, drug antibody ratio. In addition, we discuss on the trend of ADC market where global big pharmas and domestic biopharmaceutical companies are competing to develop safer and more effective ADCs.

Clinical Analysis of Rhabdomyolysis Complicated with Drug Intoxications (횡문근융해증을 유발하는 음독 약물별 임상경과 분석)

  • Lee Mi Jin;Kim Hyung Min;Kim Young Min;Lee Won Jae;So Byung Hak;Kim Se Kyung
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Purpose: According as the accessibility about drugs becomes various, the occurrence of drug intoxication is increasing. Since report that doxylamine causes rhabdomyolysis often, drug-induced rhabdomyolysis is one of the most important complications in patients with drug intoxication. Acute renal failure (ARF)'s availability is important to the management in rhabdomyolysis, but report about rhabdomyolysis or ARF occurrence for whole intoxicated drugs is lacking up to now. Methods: This research did to 61 patient who had rhabdomyolysis of drug intoxication. First, object patients were divided into two gruops: doxylamine-ingested (Group I) vs non-doxylamine ingested (Group II). And then we analyzed on the early patient's clinical events and laboratory data. We used ROC curve to recognize'the early clinical factors that could forecast ARF appearance among these patients in addition. Results: Almost rhabdomyolysis was happened by doxylamine in drug intoxication ($55.7\%$). However, as compared to group II, group I showed better clinical course, lesser ARF occurrence and hemodialysis requirement. In group II, time was longer in hospital reaching from intoxication, the ARF occurrence rate was higher ($52.6\%$). Analyzing the ROC curve to useful initial factors, they were creatinine, uric acid and interval time from ingestion to hospital. These cut-off values were 1.44 mg/dL, 6.8 mg/dL and 5 hrs. Sensitivity for ARF estimate was $100\%$, specificity $69-98\%$. Conclusion: Compared to group II, Doxylamine-ingested group showed good clinical course. Creatinine, uric acid, interval time from ingestion to hospital aided in ARF estimate in drug-induced rhabdomyolysis.

  • PDF

Intracellular delivery and anti-tumor activity of polyethyleneglycol liposomes containing cationic lipid (양이온성 지질이 포함된 PEG 리포솜의 세포내 이입 및 항암효력 평가)

  • Jung, Soon-Hwa;Kim, Sung-Kyu;Jung, Suk-Hyun;Seong, Ha-Soo;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.3
    • /
    • pp.163-169
    • /
    • 2008
  • Liposomes are spherical vesicles composed of lipid bilayer membranes. However, the conventional liposomes have been found to be plagued by rapid opsonization and taken up by the reticuloendothelial system (RES), resulting in shortened circulation time and limited intracellular uptake to target cell. In this study, polyethyleneglycol-cationic liposomes (PCL) containing cationic lipid and DSPE-mPEG were prepared by thin film cast-hydration method. The PEG liposomes had approximately $97.0{\pm}1.3\;nm$ of mean particle diameter and $-21.7{\pm}1.2\;mV$ of zeta potential value. PCL had $96.4{\pm}1.8\;nm$ of mean particle diameter and $-8.7{\pm}1.1\;mV$ of zeta potential value with a decrease of about 10 mV compared to the PEG liposomes. Loading of model drug, doxorubicin (DOX), in liposomes were carried out by using remote loading method and the loading efficiency of DOX in liposomes was about $95.0{\pm}1.9%$. Intracellular uptake and cytotoxicity of PCL were higher than that of PEG liposomes to murine B16F10 melanoma cells. In addition, anti-tumor activity of PCL was similar to that of PEG liposomes on growth of A549 human lung carcinoma in BALB/c mice. Consequently, PCL modified with cationic lipid may be applicable as anticancer drug carriers that can increase intracellular uptake and therapeutic efficacy.

Development of Dissolution Test Method for Acebrophylline Capsules and Bromhexine Hydrochloride Tablets in Korean Pharmaceutical Codex (고시수재 의약품 중 아세브로필린 캡슐 및 브롬헥신염산염 정의 용출시험법 개발)

  • Lee, Tae-Woong;Jeong, Rae-Seok;Jeong, Seung-A;Kim, Jeong-Hyun;Shim, Young-Hun;Kim, In-Kyu;Park, Chang-Won
    • YAKHAK HOEJI
    • /
    • v.57 no.3
    • /
    • pp.226-233
    • /
    • 2013
  • Although the dissolution test can serve as an effective tool for quality control and predictor of in vivo performance, there are a number of drugs with no established dissolution specification in Korean Pharmaceutical Codex (KPC). So, with each reference and test drugs, the dissolution test method and an analytical procedure by HPLC were developed and validated to establish dissolution specification for acebrophylline capsules and bromhexine hydrochloride tablets. The dissolution condition was determined based on the "Guidelines on Specifications of Dissolution tests for Oral dosage forms" of Ministry of Food and Drug Safety (MFDS). The analytical method of HPLC was validated in specificity, linearity, precision and accuracy. Final dissolution test was performed with commercially available samples of 3 lots to establish specification. In addition, no difference was observed by the inter-laboratory evaluation. Dissolution specifications and conditions will be used for revising the monograph of acebrophylline capsules and bromhexine hydrochloride tablets in next supplement of KPC.

Analysis of Pharmacogenetic Information in Korea Drug Labels (국내 허가사항에 반영된 약물 유전정보 분석)

  • Lee, Mijin;Kim, Sukyung;Yee, Jeong;Gwak, Hye Sun;Choi, Kyung Hee
    • Korean Journal of Clinical Pharmacy
    • /
    • v.31 no.1
    • /
    • pp.21-26
    • /
    • 2021
  • Background: Pharmacogenomics is the study of how genetic mutations in patients affect their response to drugs. Pharmacogenomic studies aim to maximize drug effects and minimize adverse drug events. The Food and Drug Administration and the European Medicine Agency published guidelines for pharmacogenetics in 2005 and 2006, respectively; the Korean Ministry of Food and Drug Safety followed suit in 2015. Methods: This study analyzed pharmacogenomic information in the Korean Ministry of Food and Drug Safety's integrated drug information system to evaluate whether domestic pharmaceutical products reflect the current research on pharmacogenomic differences. Results: In June 2020, the Korean pharmacogenomic database contained genomic data on 90 compounds. Of these, 45 compounds were classified as "Antineoplastic and immunomodulating agents." The other 45 non-antineoplastic agents were in the following categories: Anti-infectives, Mental & behavior disorder, Hormone & metabolism related diseases, Cardiovascular system, Skin & subcutaneous tissue disease, Genito-urinary system and sex hormones, Blood and blood forming organs, Nervous system, Alimentary tract and metabolism, Musculo-skeletal system, and Other conditions including the respiratory system. In addition, 30 additives unrelated to the main ingredient were associated with genetic precautions. Conclusion: This study showed that antineoplastic and immunomodulating agents accounted for half the drugs associated with pharmacogenetic information. For antitumor and immunomodulatory drugs, genomic tests were recommended depending on the indication; this was in contrast to genomic testing recommendations for non-antineoplastic medications. Genomic tests were rarely requested or recommended for non-antineoplastic medications because the relationships between genotype and efficacy among those drugs were relatively weak.

Carboxylesterases: Structure, Function and Polymorphism

  • Satoh, Tetsuo;Hosokawa, Masakiyo
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.335-347
    • /
    • 2009
  • This review covers current developments in molecular-based studies of the structure and function of carboxylesterases. To allay the confusion of the classic classification of carboxylesterase isozymes, we have proposed a novel nomenclature and classification of mammalian carboxylesterases on the basis of molecular properties. In addition, mechanisms of regulation of gene expression of carboxylesterases by xenobiotics, and involvement of carboxylesterase in drug metabolism are also described.

Effects of L-Phenylalanine on the Saikosaponin Content of Bupleurum falcatum Callus (L-Phenylalanine이 시호 캘러스의 Saikosaponin 함량에 미치는 영향)

  • Seong, Rack-Seon
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.4
    • /
    • pp.354-358
    • /
    • 1996
  • This experiment was conducted to find out the effects of L-phenylalanine on the saikosaponin content of callus induced from Bupleurum falcatum leaf segments. In the fresh and dry weight of callus, the addition of 2,4-D than L-phenylalanine was significantly effective. However, the L-phenylalanine treatment rather than 2,4-D was effective for high saikosaponin accumulation in the callus of Bupleurum falcatum.

  • PDF