• Title/Summary/Keyword: driving voltage

Search Result 1,226, Processing Time 0.032 seconds

Effect of Surface Roughness on the Actuation of Ionic Polymer Metal Composites (표면 조도에 따른 이온성 고분자-금속 복합체의 구동특성)

  • Jung, Sunghee;Song, Jeomsik;Kim, Guoosuk;Lee, Sukmin;Mun, Museong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.586-590
    • /
    • 2006
  • As one of electro active polymers for soft smart materials, the ionic polymer metal composites (IPMC) are easy to produce through chemical reduction processing and show high displacements at low voltage. When the IPMC actuates, the deformation depends on a few factors including the structure of based membrane, species and morphology of the metal electrodes, the nature of cations and the level of hydration. As previously published, we have been studying on improvement of actuation through surface electrode modification of IPMC to grasp the effect of electrode morphology on actuation. This study is comparative experiments through the chemical reaction and deposition by ion beam assisted deposition (IBAD) in order to prepare the very thin and homogeneous surface electrode of IPMC. The IPMCs were prepared with different surface roughness of polymer membrane, and the influence of the surface roughness on the actuation was studied. By investigating the electrical properties and driving displacement, the actuating properties of IPMC with different surface roughness were studied.

On the Pressurization Characteristics of Small Piezoelectric Hydraulic Pump for Brake System (브레이크용 소형 압전유압펌프 가압 동특성 해석)

  • Jeong, Min-Ji;Hwang, Jai-Hyuk;Bae, Jae-Sung;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.963-970
    • /
    • 2015
  • In this study, the pressurization characteristics of the small piezoelectric hydraulic pump for a brake system has been analyzed through modeling the full hydraulic pump components; the pump chamber, check valve, pump load, pump drive controller etc. To analyze the pressurization characteristics, the process of charging pressure in the chamber with stacked-layer piezoelectric actuator were firstly modeled. Secondly, the flow coefficient of the check valve in terms of valve opening has been calculated after computational fluid dynamics analysis, such as the pressure distribution around check valve and the flow rate, was conducted. Also the pump driving controller, which controls the input voltage to the actuator, was designed to make the load pressure follow the input pressure command. The simulation results find that it takes about 0.03ms to reach the operating load pressure required for the braking system. The simulation result was also verified through comparison to the result of the pump performance test.

Observation of Plasma Shape by Continuous dc and Pulsed dc (직류 방전과 펄스 직류 방전에 의한 플라즈마 형상 관찰)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Effects of bipolar pulse driving frequency between 50 kHz and 250 kHz on the discharge shapes were analyzed by measuring plasma characteristics by OES (Optical Emission Spectroscopy) and Langmuir probe. Plasma characteristics were modeled by a simple electric field analysis and fluid plasma modeling. Discharge shapes by a continuous dc and bipolar pulsed dc were different as a dome-type and a vertical column-type at the cathode. From OES, the intensity of 811.5 nm wavelength, the one of the main peaks of Ar, decreased to about 43% from a continuous dc to 100 kHz. For increasing from 100 kHz to 250 kHz, the intensity of 811.5 nm wavelength also decreased by 46%. The electron density decreased by 74% and the electron temperature increased by 36% at the specific position due to the smaller and denser discharge shape for increasing pulse frequency. Through the numerical analysis, the negative glow shape of a continuous dc were similar to the electric potential distribution by FEM (Finite Element Method). For the bipolar pulsed dc, we found that the electron temperature increased to maximum 10 eV due to the voltage spikes by the fast electron acceleration generated in pre-sheath. This may induce the electrons and ions from plasma to increase the energetic substrate bombardment for the dense thin film growth.

A Study on the Generating Characteristics Depending on Driving System of a Honeycomb Shaped Piezoelectric Energy Harvester (벌집형 압전 발전 소자의 구동방식에 따른 출력 특성)

  • Jeong, Seong-Su;Kang, Shin-Chul;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, energy harvesting technology is increasing due to the fossil fuel shortages. Energy harvesting is generating electrical energy from wasted energies as sunlight, wind, waves, pressure, and vibration etc. Energy harvesting is one of the alternatives of fossil fuel. One of the energy harvesting technologies, the piezoelectric energy harvesting has been actively studied. Piezoelectric generating uses a positive piezoelectric effect which produces electrical energy when mechanical vibration is applied to the piezoelectric device. Piezoelectric energy harvesting has an advantage in that it is relatively not affected by weather, area and place. Also, stable and sustainable energy generation is possible. However, the output power is relatively low, so in this paper, newly designed honeycomb shaped piezoelectric energy harvesting device for increasing a generating efficiency. The output characteristics of the piezoelectric harvesting device were analyzed according to the change of parameters by using the finite element method analysis program. One model which has high output voltage was selected and a prototype of the honeycomb shaped piezoelectric harvesting device was fabricated. Experimental results from the fabricated device were compared to the analyzed results. After the AC-DC converting, the power of one honeycomb shaped piezoelectric energy harvesting device was measured 2.3[mW] at road resistance 5.1[$K{\Omega}$]. And output power was increased the number of harvesting device when piezoelectric energy harvesting device were connected in series and parallel.

Fabrication of SnO2-based All-solid-state Transmittance Variation Devices (SnO2 기반 고체상의 투과도 가변 소자 제조)

  • Shin, Dongkyun;Seo, Yuseok;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.23-29
    • /
    • 2020
  • Electrochromic (EC) device is an element whose transmittance is changed by electrical energy. Coloring and decoloring states can be easily controlled and thus used in buildings and automobiles for energy saving. There exist several types of EC devices; EC using electrolytes, polymer dispersed liquid crystal (PDLC), and suspended particle device (SPD) using polarized molecules. However, these devices involve solutions such as electrolytes and liquid crystals, limiting their applications in high temperature environments. In this study, we have studied all-solid-state EC device based on Tin(IV) oxide (SnO2). A coloring phase is achieved when electrons are accumulated in the ultraviolet (UV)-treated SnO2 layer, whereas a decoloring mode is obtained when electrons are empty there. The UV treatment of SnO2 layer brings in a number of localized states in the bandgap, which traps electrons near the conduction band. The SnO2-based EC device shows a transmittance of 70.7% in the decoloring mode and 41% in the coloring mode at a voltage of 2.5 V. We have achieved a transmittance change as large as 29.7% at the wavelength of 550 nm. It also exhibits fast and stable driving characteristics, which have been demonstrated by the cyclic experiments of coloration and decoloration. It has also showed the memory effects induced by the insulating layer of titanium dioxide (TiO2) and silicone (Si).

Driving System of 7-Phase BLDC Motor Speed Control by Fuzzy Controller (Fuzzy 제어기를 이용한 7상 BLDC 전동기 속도제어 구동시스템)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1663-1668
    • /
    • 2017
  • A BLDC motor with higher number of phases has several advantages, compared to the conventional three-phase BLDC motors. It can reduce the commutation torque ripple and the iron loss without increasing the voltage per phase and increase the reliability and power density. Higher number of phases increase the torque-per-ampere ratio for the same machine volume and output power by widening the electrical conduction period. In this paper, the proposed seven-phase BLDC motor drive system is made into several functional modular blocks, so that it can be easily extended to other ac motor applications: back-EMF block, hysteresis current control block, pwm inverter block, phase current block, and speed/torque control block. Also in a system of BLDC motor drive, the PI controller has been widely used in the speed controller because of the simple implementation. To obtain a good speed response in a general drive system using the PI controller, the high bandwidth of a controller is established. therefore, in this paper, a Fuzzy controller is applied to the 7-phase BLDC motor drive system in order to improve the speed control performance. The Fuzzy controller is compared with a conventional PI controller through the experiment with respect to speed dynamic responses. These experimental results show that the Fuzzy controller of the 7-phase BLDC motor drive system is superior over the conventional PI controller. The algorithm using the Fuzzy controller can improve a comfortable ride in the field of high performance 7-phase BLDC motor drive applications.

The characteristics of source/drain structure for MOS typed device using Schottky barrier junction (Schottky 장벽 접합을 이용한 MOS형 소자의 소오스/드레인 구조의 특성)

  • 유장열
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.7-13
    • /
    • 1998
  • The VLSI devices of submicron level trend to have a lowering of reliability because of hot carriers by two dimensional influences which are caused by short channel effects and which are not generated in a long channel devices. In order to minimize the two dimensional influences, much research has been made into various types of source/drain structures. MOS typed tunnel transistor with Schottky barrier junctions at source/drain, which has the advantages in fabrication process, downsizing and response speed, has been proposed. The experimental device was fabricated with p type silicon, and manifested the transistor action, showing the unsaturated output characteristics and the high transconductance comparing with that in field effect mode. The results of trial indicate for better performance as follows; high doped channel layer to lower the driving voltage, high resistivity substrate to reduce the leakage current from the substrate to drain.

  • PDF

Design of Multiband Octa-Phase LC VCO for SDR (SDR을 위한 다중밴드 Octa-Phase LC 전압제어 발진기 설계)

  • Lee, Sang-Ho;Han, Byung-Ki;Lee, Jae-Hyuk;Kim, Hyeong-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.7-11
    • /
    • 2007
  • This paper presents a multiband octa-phase LC VCO for SDR receiver. Four identical LC VCOs are connected by using series coupling transistor to obtain the octa-phase signal and low phase noise characteristic. For a multiband application, a band tuning circuit that consists of a switch capacitor circuit and two MOS varactors is proposed. As the MOS switch is on/off state, the frequency range will be varied. In addition, two varactors make the VCO be immune to process variation of the oscillation frequency. The VCO is designed in 0.18-um CMOS technology, consumes 12mA current from 1.8V supply voltage and operates with a frequency band from 885MHz to 1.342GHz (41% tuning range). As driving sub-harmonic mixer, the proposed VCO covers 3 standards(CDMA 2000 1x, WCDMA, WiBro). The measured phase noise is -105dBc@100kHz, -115dBc@1MHz, -130dBc@10MHz for CDMA 2000 1x, WCDMA, WiBro respectively.

Pigtailing and Guiding Experiments of Single and 1$^\circ$ Y-branch Ti:LiNbO$_3$ Mach-Zehnder Inteferometric Optical Waveguide for fabricating an Optical Phase Modulator (광위상변조기 제작용 Single Channel 및 1$^\circ$ Y-branch Mach-Zehnder간섭기형 Ti:LiNbO$_3$ 도파로 Pigtailing 및 도파실험)

  • Kim, Seong-Ku;Jung, Won-Jo;Cho, Jae-Cheol;Park, Kye-Choon;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.101-104
    • /
    • 1998
  • We report some methods for measuring a LiNbO$_3$ optical phase modulator bandwidth. Since Mach-Zehnder waveguide type, one of methods for modulation bandwidth measurement, is comparatively simple and useful, it was adapted in this work. In order to confirm this method, the waveguide of single and Mach-Zehnder type were fabricated on the same wafer. The Mach-Zehnder interferometric waveguide and the single channel waveguide were used for the measurement of the phase modulator's driving voltage and bandwidth for device fabrications, respectively. Ti-860$\AA$ in-diffusion was achieved in a wet-bubbling oxygen environment at 105$0^{\circ}C$/8hours. LINbO$_3$ internal chips were pigtailed to PMF(polarization maintaining fiber)/SMF(single mode fiber) using an epoxy curing technique. Examined were optical properties such as an insertion loss, propagation loss and mode size, and the loss mechanism of optical coupling between an optical fiber and a waveguide was considered.

  • PDF

The Fabrication and Characteristic Analysis of Single-Layer White Organic Light Emitting Devices (단일층 백색유기발광소자의 제작 및 특성분석)

  • Kim, Jung-Yeoun;Kang, Seong-Jong;Roh, Byeong-Gyu;Kang, Myung-Koo;Oh, Hwan-Sool
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.11-16
    • /
    • 2002
  • In this paper, single-layer white organic light emitting device was fabricated on ITO glass substrate using PVK as host, Bu-PBD as electron transport layer, Nile Red, Coumarin 6, TPB as red, green, blue color fluorescent dyes. The red, green, blue organic light emitting devices were fabricated respectively. After the characteristic analysis of each color device, the white organic light emitting device was fabricated with optimized condition of each color device by spin coating method. we obtained white emission CIE coordination of (0.32, 0.34) and luminescence of 785cd/$m^2$ at driving voltage of 20V with condition of PVK(70wt%), Bu-PBD(30wt%), Nile Red(0.015mol%), Coumarin 6(0.04mol%), TPB(3mol%).