• Title/Summary/Keyword: driving rain index

Search Result 5, Processing Time 0.02 seconds

Determination of Driving Rain Index by Using Hourly Weather Data for Developing a Good Design of Wooden Buildings

  • Ra, Jong Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.627-636
    • /
    • 2018
  • This research was performed to supplement the previous research about the driving rain index (DRI) for Korea determined by using daily weather data for 30 years. The average annual driving rain index (AADRI) was calculated from the hourly weather data, and the magnitude of DRI was investigated according to wind directions. The hourly climate data were obtained from the Korea Meteorological Administration (KMA) for the period 2009 to 2017. Of 82 locations investigated, seven were classified into regions where the level of exposure of walls to rain was high. The result showed quite a difference from the previous results, in which no high exposure regions were observed. Since the hourly-based and the daily-based annual driving rain index (ADRI) values showed only a slight difference, the result may be explained by the length of the periods used in both studies. The change of DRI according to wind directions showed that there was a certain range of wind directions in which driving rain easily approached building walls. It suggests that the consideration of wind directions with high DRI would be useful to develop a good design of wooden buildings from the point of wood preservation and maintenance.

Determination of Driving Rain Index in Korea (국내 유도강우지수의 결정)

  • Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • This research was performed to evaluate the level of exposure of buildings to rain in Korea. The impingement of driving rain by wind is evaluated by driving rain index (DRI). Average annual driving rain indexes (AADRI) for 64 stations spread all over Korea have been determined by using the data of wind speed and precipitation obtained from Korea Meteorological Adminstration (KMA). Based on the values, the regions has been classified as low, moderate, and high. No high exposure regions were found in Korea; 22 regions with moderate exposure and 42 regions with low exposure. Although the values are very dependent on climate change, most of Korea except several regions such as Daegwallyeong, Busan, Yeosu, and Jeju island may be evaluated to be the region where exposure of buildings to driving rain is low to moderate.

Sustainability Evaluation of Western Nakdong River Basin by the Systems Ecology (시스템 생태학적 접근법에 의한 서낙동강 유역의 지속성 평가)

  • Kim, Jin Lee;Park, Bae Kyung;Lee, Su Woong;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.439-445
    • /
    • 2010
  • An emergy analysis of the main energy flows driving the economy of humans and life support systems consists of environmental energies, fuels, and imports, all expressed as solar emjoules. Total emergy use (371 E20 sej/yr) of the Western Nakdong River Basin is 97 per cent from imported sources, fuels and goods and services. Emergy flows from the environment such as rain and geological uplift flux accounted for only 2.9 percent of total emergy use. Emergy yield ratio and environment loading ratio were 1.03 and 33.27, respectively. Emergy sustainability index, a ratio of emergy yield ratio to environment loading ratio, is therefore less than one, which is indicative of highly developed consumer oriented economies. It is necessary for an efficient management of Western Nakdong River Basin to reduce pollution load basically and to restructure economic activities into an environmental friendly industrial structure depending on renewable energy and resources.

EMERGY Analysis of Nakdong River Basin for Sustainable Use (낙동가 유역의 지속가능한 이용을 위한 EMERGY 분석)

  • 김진이;손지호;김영진;이석모
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • An EMERGY analysis of the main energy flows driving the economy of humans and life support systems consists of environmental energies, fuels, and imports, all expresses as solar emjoules. Total EMERGY use(720.0 E20 sej/yr) of the Nakdong River Basin is 96 per cent from imported sources, fuels and goods and services. EMERGY flows from the environment such as rain and geological uplift flux accounted for only 4 percent of total EMERGY use. Consequently, the ratio of outside investment to attracting natural resources was large, like other industrialized areas. EMERGY use per person in the Nakdong River Basin indicates a moderate EMERGY standard of living, even though the indigenous resources are very poor. Population of 6.66 million people in 1996 is already in excess of carrying capacity of the basin. Carrying capacity for steady state based on its renewable sources in only 0.226 million people. EMERGY yield ratio and environment loading ratio were 1.07 and 28.52, respectively. EMERGY sustainability index, a ratio of EMERGY yield ratio to environment loading ratio, is therefore less than one, which is indicative of highly developed consumer oriented economies. This study suggests that the economic structure of the Nakdong River Basin should be transformed from the present industrial structure to the social-economic structure based on an ecological-recycling concept for the sustainable use of the Nakdong River.

  • PDF

A Study of Skid Resistance Characteristics by Deicing Chemicals (제설제 사용으로 인한 노면 미끄럼저항 특성 연구)

  • Lee, Seung Woo;Woo, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.813-819
    • /
    • 2006
  • Skid Resistance is a index to represent the friction between tire and road surface, which influences driving safety. Skid resistance varies with the conditions of tire, abrasion of road surface, vehicle speed, drying, wet and freezing condition of road surfaces. Especially, freezing occurs when temperature drops below $0^{\circ}C$ followed by snow or rain causes decrease of skid resistance. To recover the decreased skid resistance deicing work is applied. As a results of deicing works, freezing condition is changed into wet condition. However the wet road surfaces containing the remaining deicings agents may not show the skid resistance of normal wet condition. In this study, skid resistances in the condition of freezing, deicing process and deicing agents remained after snow-removal are evaluated. The test results, skid resistance recover quickly when Pre-wetted salt spreading and NaCl was used as deicing method. Skid resistance of Deicing agents remained on the road surface showed that concrete is higher than asphalt. superior effect. Recovery rate of skid resistance by comparison wet condition is 54~80%.