• Title/Summary/Keyword: driving method

Search Result 3,178, Processing Time 0.033 seconds

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

Development of Adaptive Moving Obstacle Avoidance Algorithm Based on Global Map using LRF sensor (LRF 센서를 이용한 글로벌 맵 기반의 적응형 이동 장애물 회피 알고리즘 개발)

  • Oh, Se-Kwon;Lee, You-Sang;Lee, Dae-Hyun;Kim, Young-Sung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.377-388
    • /
    • 2020
  • In this paper, the autonomous mobile robot whit only LRF sensors proposes an algorithm for avoiding moving obstacles in an environment where a global map containing fixed obstacles. First of all, in oder to avoid moving obstacles, moving obstacles are extracted using LRF distance sensor data and a global map. An ellipse-shaped safety radius is created using the sum of relative vector components between the extracted moving obstacles and of the autonomuos mobile robot. Considering the created safety radius, the autonomous mobile robot can avoid moving obstacles and reach the destination. To verify the proposed algorithm, use quantitative analysis methods to compare and analyze with existing algorithms. The analysis method compares the length and run time of the proposed algorithm with the length of the path of the existing algorithm based on the absence of a moving obstacle. The proposed algorithm can be avoided by taking into account the relative speed and direction of the moving obstacle, so both the route and the driving time show higher performance than the existing algorithm.

GPS Based Sensor Network Research for Prediction of Incident (GPS 기반 돌발 상황 예측을 위한 센서네트워크 연구)

  • Jung, Hui-Sok;Won, Dae-Ho;Yang, Yeon-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.454-456
    • /
    • 2010
  • The demands for (a) individual vehicle has been gradually increasing recently due to increase of personal income and spare time. In 2009, the quantities of registered vehicles exceeds over 17,325,210 millions pieces, and the risks of traffic accidents and traffic jam are increasing days by days. It has some limitations to solve the problem of traffic jam by transportation facilities and causes lots of time and costs. For a possible solution, ITS(Intelligent Transport System) has been introduced, but it is an insufficient way for abrupt incidents or risks on roads. The riskiest matter on driving a vehicle is unforeseen situation. In this paper, the most efficient and economical system that communicates with a driver about unexpected accident by sensor network and GPS information, is introduced rather than a traditional method associated with lots of time and costs.

  • PDF

Hardware configuration of High-Density HVPS and High Speed independent Control method Using FPGA for Phased Array Transmitters (위상 배열 고출력증폭기용 고밀도 고전압 전원공급기 하드웨어 구성 및 FPGA를 이용한 고속 독립 제어방식)

  • Kang, Chun-Ho;Lee, Sung-Wook;Lee, Hong-Hak;Lee, Chang-Hoon;Byun, Gi-Sig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2758-2764
    • /
    • 2015
  • In the field of electronic warfare applications, high voltage power supply(HVPS) for high power phased array transmitters must necessarily have an independent operating characteristics for driving mini TWTs. TWT independent operational characteristics, in order to run without interrupting the electronic warfare mission by maintaining the partial transmission function even when one of the TWT has occurred a failure, is known to be very important. In this paper, we describe the research on high-speed independent control system using a high-density HVPS, including FE modulators, hardware configuration and the FPGA in order to independently operate mini TWTs. Also, we have simulated some possible faults in phased array transmitters, and presents the test results to control a faulted TWT independently.

Biomechanical Analysis of Golf Driver Swing Motion According to Gender

  • Bae, Kang Ho;Lee, Joong Sook;Han, Ki Hoon;Shin, Jin Hyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Objective: The purpose of this study is to investigate the differences in biomechanical variables of golf driving motion according to gender. Method: A total of 21 healthy golfers (11 men and 10 women) who have more than 5 years of professional experience and have been registered in the Korea Golf Association was recruited. A 250-Hz 8-camera motion capture system (MX-T20, Vicon, LA, USA) was used to capture the motion trajectories of a total of 42 reflective markers attached to the golfer's body and club. Moreover, two 1,000-Hz AMTI force plates (AMTI OR6-7-400, AMTI, MA, USA) were used to measure the ground reaction force. The mean and standard deviation for each parameter were then calculated for both groups of 21 subjects. SPSS Windows version 23.0 was used for statistical analysis. The independent t-test was used to determine the differences between groups. An alpha level of .05 was utilized in all tests. Results: There were differences in joint angles according to gender during golf driver swing. Men showed a statistically significantly higher peak joint angle and maximum range of angle in sagittal and frontal axis of the pelvis, hip, and knee. Moreover, women's swing of the pelvis and hips was found to have a pattern using the peak joint angle and range of angle in the vertical axis of the pelvis and hip. There were the differences in peak joint moment according to gender during golf driver swing. Men used higher joint moment in the downswing phase than women in the extensor, abductor, and external rotator muscles of the right hip; flexor and adductor muscles of left hip joint; and flexor and extensor muscles of the right knee. Conclusion: This result reveals that male golfers conducted driver swing using stronger force of the lower body and ground reaction force based on strength of hip and thigh than female golfers.

Analysis of Carbon Dioxide Separation with Countercurrent Flow in Hollow Fiber Membrane by Numerical Analysis (수치해석에 의한 향류 흐름 중공사 분리막의 이산화탄소 분리 성능 해석)

  • Lee, Yong-Taek;Song, In-Ho;Ahn, Hyo-Seong;Lee, Young-Jin;Jeon, Hyun-Soo;Kim, Jeong-Hoon;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.252-258
    • /
    • 2006
  • A numerical analysis was performed for a separation process of carbon dioxide from a flue gas stream using polyethersulfone hollow fiber membranes. Countercurrent flow governing equations were regarded to be two point boundary-value problem and the nonlinear ordinary differential equation were simultaneously solved using the finite- difference method. A computer program was developed using the Compaq Visual Fortran 6.6 software. The carbon dioxide permeate driving force and the fred gas residence time at the inside of membrane were found to be very important factors affecting the permeation characteristics of carbon dioxide. The carbon dioxide concentration in the permeate and the flow rate of the permeate were found to be slightly larger by a few percent with a countercurrent flow analysis than those with a cocurrent flow analysis.

Replacement Condition Detection of Railway Point Machines Using Data Cube and SVM (데이터 큐브 모델과 SVM을 이용한 철도 선로전환기의 교체시기 탐지)

  • Choi, Yongju;Oh, Jeeyoung;Park, Daihee;Chung, Yongwha;Kim, Hee-Young
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.33-41
    • /
    • 2017
  • Railway point machines act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Since point failure caused by the aging effect can significantly affect railway operations with potentially disastrous consequences, replacement detection of point machine at an appropriate time is critical. In this paper, we propose a replacement condition detection method of point machine in railway condition monitoring systems using electrical current signals, after analyzing and relabeling domestic in-field replacement data by means of OLAP(On-Line Analytical Processing) operations in the multidimensional data cube into "does-not-need-to-be replaced" and "needs-to-be-replaced" data. The system enables extracting suitable feature vectors from the incoming electrical current signals by DWT(Discrete Wavelet Transform) with reduced feature dimensions using PCA(Principal Components Analysis), and employs SVM(Support Vector Machine) for the real-time replacement detection of point machine. Experimental results with in-field replacement data including points anomalies show that the system could detect the replacement conditions of railway point machines with accuracy exceeding 98%.

A Study on Human-friendly Path Decision using Fuzzy Logic (퍼지 로직을 이용한 인간 친화적인 경로 설정에 관한 연구)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.616-621
    • /
    • 2006
  • Recently many cars are equipping a navigation system. The main purpose of the early system guides a user through the route. A navigation system includes various abilities by development of various technologies and it has given more convenience to user. It can play various records on the tape and announces which are useful information about each road. Also it can use various multi-media contents by DMB device during driving. However, guide function of basic and important road in the navigation system has not grown greatly yet. In this paper, we proposed recommendation method of human-friendly road considering user's condition through various information of outside environment, user's velocity intention, a driver's emotion and a preference of the road. Modules consists of hierarchical structure that can easily correct and add each algorithm and those use fuzzy logic algorithm.

Feedback Shift Controller Design of Automatic Transmission for Tractors (트랙터 자동변속기 되먹임 변속 제어기 설계)

  • Jung, Gyu Hong;Jung, Chang Do;Park, Se Ha
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Nowadays automatic transmission equipped vehicles prevail in construction and agricultural equipment due to their convenience in driving and operation. Though domestic vehicle manufacturers install imported electronic controlled transmissions at present, overseas products will be replaced by domestic ones in the near future owing to development efforts over the past 10 years. For passenger cars, there are many kinds of shift control algorithms that enhance the shift quality such as feedback and learning control. However, since shift control technologies for heavy duty vehicles are not highly developed, it is possible to improve the shift quality with an organized control method. A feedback control algorithm for neutral-into-gear shift, which is enabled during the inertia phase for the master clutch slip speed to track the slip speed reference, is proposed based on the power transmission structure of TH100. The performance of the feedback shift control is verified by a vehicle test which is implemented with firmware embedded TCU. As the master clutch engages along the predetermined speed trajectory, it can be concluded that the shift quality can be managed by a shift time control parameter. By extending the proposed feedback algorithm for neutral-into-gear shift to gear change and shuttle shift, it is expected that the quality of the shift can be improved.

Study on Steering Ratio of Four-Row Rigid Tracked Vehicle on Extremely Cohesive Soft Soil Using Numerical Simulation (수치해석을 이용한 연약지반 4열 강체 무한궤도 차량의 최적 선회비 연구)

  • Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong;Min, Cheon-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.81-89
    • /
    • 2013
  • This paper considers the steering characteristics of a four-row tracked vehicle crawling on extremely cohesive soft soil, where each side is composed of two parallel tracks. The four-row tracked vehicle (FRTV) is assumed to be a rigid body with 6-DOF. A dynamic analysis program for the tracked vehicle is developed using the Newmark-${\beta}$ method based on an incremental-iterative scheme. A terra-mechanics model of an extremely cohesive soft soil is implemented in the form of the relationships of the normal pressure to the sinkage, the shear resistance to the shear displacement, and the dynamic sinkage to the shear displacement. In order to investigate the steering characteristics of the four-row tracked vehicle, a series of dynamic simulations is conducted with respect to the distance between the left and right tracks (pitch), steering ratios, driving velocity, reference track velocity, lengths of the tracks, and properties of the cohesive soft soil. Through these numerical simulations, the possibility of using a kinematic steering ratio is explored.