• Title/Summary/Keyword: driving behavior

Search Result 652, Processing Time 0.032 seconds

Investigation on Characteristics of High PM2.5 Pollution Occurred during October 2015 in Gwangju (광주 지역에서 2015년 10월에 발생한 PM2.5 고농도 사례 특성 분석)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Lim, Yong Jae;Shin, Hye Jung;Lee, Sang Bo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.567-587
    • /
    • 2018
  • A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental carbon, water-soluble ions, and elemental constituents were measured at the air quality intensive monitoring station in Gwangju. The haze event occurred was attributed to a significant contribution (72.3%) of secondary inorganic species concentration to the $PM_{2.5}$, along with the contribution of organic aerosols that were strongly attributed to traffic emissions over the study site. MODIS images, weather charts, and air mass backward trajectories supported the significant impact of long-range transportation (LTP) of aerosol particles from northeastern China on haze formation over Gwangju in October 2015. The driving factor for the haze formation was stagnant atmospheric flows around the Korean peninsula, and high relative humidity (RH) promoted the haze formation at the site. Under the high RH conditions, $SO{_4}^{2-}$ and $NO_3{^-}$ were mainly produced through the heterogenous aqueous-phase reactions of $SO_2$ and $NO_2$, respectively. Moreover, hourly $O_3$ concentration during the study period was highly elevated, with hourly peaks ranging from 79 to 95ppb, suggesting that photochemical reaction was a possible formation process of secondary aerosols. Over the $PM_{2.5}$ pollution, behavior and formation of secondary ionic species varied with the difference in the impact of LTP. Prior to October 19 when the influence of LTP was low, increasing rate in $NO_3{^-}$ was greater than that in $NO_2$, but both $SO_2$ and $SO{_4}^{2-}$ had similar increasing rates. While, after October 20 when the impact of haze by LTP was significant, $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations increased significantly more than their gaseous precursors, but with greater increasing rate of $NO_3{^-}$. These results suggest the enhanced secondary transformation of $SO_2$ and $NO_2$ during the haze event. Overall, the result from the study suggests that control of anthropogenic combustion sources including vehicle emissions is needed to reduce the high levels of nitrogen oxide and $NO_3{^-}$ and the high $PM_{2.5}$ pollution occurred over fall season in Gwangju.

Development and Verification of a Large Scale Resonant Column Testing System (대형 공진주시험기의 개발 및 검증)

  • Kim, Nam-Ryong;Ha, Ik-Soo;Shin, Dong-Hoon;Kim, Min-Seub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.295-304
    • /
    • 2012
  • In this study, a resonant column testing system which is the largest in Korea has been developed to evaluate the dynamic deformation characteristics of coarse granular geomaterials, and the performance and the applicability of the testing system have been verified. The system has been developed as a typical Stokoe type device whose boundary conditions are fixed bottom and free top with additional mass, and can adopt a large specimen with 200 mm in diameter and 400 mm in height. The driving and measurement instruments are configured as high performance and precision systems, hence the automated testing system is appropriate to drive enough stress and to measure the behavior precisely for the test in practical manner. The dynamic response of the mechanical components and the applicability of the system have been evaluated using metal specimens as well as polyurethane specimens, and its precision was verified by comparing its results with those from other equipment and/or methods. To confirm the applicability of the large system for coarse geomaterials, the resonant column test results from both large and normal scale apparatus for the same material were compared and it was found that the result can be partially affected by scale. Finally, the dynamic deformation characteristics of coarse geomaterial which is used for construction of large dam was evaluated using the large system and its practicality could be confirmed.

Numerical Modeling of Flow Characteristics within the Hyporheic Zones in a Pool-riffle Sequences (여울-소 구조에서 지표수-지하수 혼합대의 흐름 특성 분석에 관한 수치모의 연구)

  • Lee, Du-Han;Kim, Young-Joo;Lee, Sam-Hee
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • Hyporheic zone is a region beneath and alongside a stream, river, or lake bed, where there is mixing of shallow groundwater and surfacewater. Hyporheic exchange controls a variety of physical, biogeochemical and thermal processes, and provides unique ecotones in a aquatic ecosystem. Field and experimental observations, and modeling studies indicate that hyporheic exchange is mainly in response to pressure gradients driven by the geomorphological features of stream beds. In the reach scale of a stream, pool-riffle structures dominate the exchange patterns. Flow over a pool-riffle sequence develops recirculation zones and stagnation points, and this flow structures make irregular pressure gradient which is driving force of the hyporheic exchange. In this study, 3 D hydro-dynamic model solves the Reynolds-averaged Navier-Stokes equations for the surface water and Darcy's Law and the continuity equation for ground water. The two sets of equations are coupled via the pressure distribution along the interface. Simulation results show that recirculation zones and stagnation points in the pool-riffle structures dominantly control the upwelling and downwelling patterns. With decrease of recirculation zones, length of donwelling zone formed in front of riffles is reduced and position of maximum downwelling point moves downward. The numerical simulation could successfully predict the behavior of hyporheic exchange and contribute the field study, river management and restoration.

An Empirical Study on the Relationship between Role Stress and Personal Creativity: The Mediating Roles of Creative Self-Efficacy and Personal Initiative (역할스트레스와 개인 창의성 간의 관계에 대한 실증연구: 창의적 자아효능감과 자기주도성의 매개역할)

  • Heo, Myung Sook;Cheon, Myun Joong
    • The Journal of Information Systems
    • /
    • v.22 no.2
    • /
    • pp.51-83
    • /
    • 2013
  • Personal creativity is critically important for organizations seeking to survive and thrive in today's highly turbulent business environments. Organizations must effectively identify and mobilize the creative resources of their members. When organizational members perceive a work environment that restricts or fails to encourage individual creative expression, a gap may exist between the level of individual creative potential and the actual amount of individual creativity practiced within the organization. In this situation, this paper will examine the impact of role conflict, role ambiguity, creative self-efficacy, and personal initiative on personal creativity. Creative self-efficacy is the subjective belief in one's personal ability to be creative, that is, a personal assessment of one's own creative potential. A strong internal belief in one's ability to successfully engage in creative behaviors is generally considered an important part of the creative process. Personal Initiative refers to behaviors, mainly directed toward work and organizational issues, that are characterized by the following aspects: self-starting, proactive, and persistent in overcoming barriers. Creativity-related creative self-efficacy and personal initiative are critical components to understand motivation that coordinates the relationship between perception and behavior of individual employees. Based on role theory, researchers have focused on role conflict and role ambiguity as the two key ingredients of role stress. Role ambiguity is defined as an evaluation about the lack of salient information needed to perform a role effectively. Role conflict results from two or more sets of incompatible demands involving work-related issues. Employees are usually pursued work-roles more than one in work-focused organization. Too many work-roles and perceived uncertainties at employee's work can be obstacles to personal creativity. In an analysis of results, while role conflict is not negatively related significantly to creative self-efficacy, role ambiguity is negatively related significantly to creative self-efficacy. While role conflict is significantly related to personal creativity, role ambiguity is negatively related significantly to personal creativity. Creative self-efficacy mediates the relationship among role conflict, role ambiguity, and employee creativity. Personal initiative mediates the relationship between creative self-efficacy and employee creativity. This paper shows that creative self-efficacy and personal initiative are the driving force behind personal creativity. Organizations can get some implications of creative-related role conflict and role ambiguity that employees have experienced. As a result, organizations must not only encourage creativity of employees by greater involvement but also encourage their input towards their-focused own works and tasks. And employees should be developed to pace with the organizational needs and development. Management must enable employees to think of new ideas and practices that promotes personal creativity.

An Analysis of Diversion Rate by The types of Display and The levels of Delay on VMS (Variable Message Sign) (가변안내표지판 메시지 표출형식 및 지체수준 별 운전자 우회율 분석 연구)

  • Yu, Su-In;Kim, Byung-Jong;Kim, Won-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.54-67
    • /
    • 2013
  • The main purpose of this study is to analyze the diversion rate by the levels of delay and the types of display. For this study, we developed the logit model by analyzing the result of SP survey of drivers who have driver's licence after manipulating a virtual driving simulator. The result of analysis was that the types of display was not statistically significant to the diversion rate. On the other hand, the levels of delay was very meaningful factor with the diversion rate. When the main road was flowing smoothly, drivers started to detour at the levels of delay 125% under the traffic free flow state. Similarly, when the levels of delay got worse, the diversion rate kept the same percentage as it was at the levels of delay 125% state which represented a smooth road condition. Likewise, when the main road's traffic flow was slow, drivers appeared to make detours at the same state of the levels of delay 125%. It was found that as the levels of delay got worse, the diversion rose higher than the diversion rate at the condition of slow traffic flow situation with the levels of delay 125%. The result of this study suggests the criterion of drivers detour point. For the conclusion, the result of study would be a reasonable reference for establishing transportation strategies by reflecting drivers' detouring property and would improve the efficiency of traffic flow.

Relationship between fatigue resistance and fracture behavior of the carbon fiber sheet and carbon fiber strand sheet reinforced RC slabs (Carbon fiber sheet 및 carbon fiber strand sheet 접착보강한 RC 상판의 내피로성과 파괴거동과의 상관관계)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho;Kim, Do Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.294-298
    • /
    • 2015
  • According to the results of "Highway Bridges Long Life Repair Plan." The most serious damage to RC slabs is caused by fatigue deterioration, which results from the driving loads of large-sized vehicles, and aging of materials. In response to this, adhesion reinforcement using carbon fiber sheet is being adopted. In addition, carbon fiber strand sheet that holds the same material characteristics as CFS, but has superior workability, has been developed as a new reinforcement material. However, almost no studies have been conducted on CFSS in relation to fatigue resistance evaluation through fatigue tests under running wheel loads, with the exception of a few by some organizations. Therefore, in this study, specimens with front CFS adhesion reinforcement on the bottom surface of the RC slab and specimens with grid-type CFSS reinforcement were manufactured. Then, fatigue tests under running wheel loads were conducted, and thus fatigue resistance was evaluated using the specimens.

Automatic Frequency Conversion Algorithm for Vehicle Radio (차량 라디오 주파수 자동변환 알고리즘)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.939-944
    • /
    • 2014
  • Traffic accidents caused by the attention dispersion are increasing and the behavior of the attention dispersion affects the front-observing rate, road keeping ability, and reaction time for a dangerous situation. Many drivers listen to a radio broadcast and they have to change the frequency for continuously listening a radio broadcast of the specific broadcasting station in case of crossing a boundary of the particular area. In this situation, the possibility of a car accident increases, because the attention dispersion of a driver might be occurred. Especially, the risk of a car accident caused by changing the frequency of a radio is more serious in the highway, due to the high speed of a vehicle. In order to reduce the risk of a car accident caused by handling a radio during driving car, in this paper, we propose an automatic frequency conversion algorithm for vehicle radio, which saves normal system frequencies of primary broadcasting stations in a database and determines new frequency of the changed area using the location information obtained from a navigation system in a boundary of the specific area. After determining new frequency, the proposed algorithm selects a frequency with better receiving rate comparing signal-to-noise ratios (SNRs) of two signals corresponding previous and new frequencies.

Development of a Pipe Network Fluid-Flow Modelling Technique for Porous Media based on Statistical Percolation Theory (통계적 확산이론에 기초한 다공질체의 유동관망 유동해석 기법 개발)

  • Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.447-455
    • /
    • 2013
  • A micro-mechanical pipe network model with the shape of a cube was developed to simulate the behavior of fluid flow through a porous medium. The fluid-flow mechanism through the cubic pipe network channels was defined mainly by introducing a well-known percolation theory (Stauffer and Aharony, 1994). A non-uniform flow generally appeared because all of the pipe diameters were allocated individually in a stochastic manner based on a given pore-size distribution curve and porosity. Fluid was supplied to one surface of the pipe network under a certain driving pressure head and allowed to percolate through the pipe networks. A percolation condition defined by capillary pressure with respect to each pipe diameter was applied first to all of the network pipes. That is, depending on pipe diameter, the fluid may or may not penetrate a specific pipe. Once pore pressures had reached equilibrium and steady-state flow had been attained throughout the network system, Darcy's law was used to compute the resultant permeability. This study investigated the sensitivity of network size to permeability calculations in order to find out the optimum network size which would be used for all the network modelling in this study. Mean pore size and pore size distribution curve obtained from field are used to define each of pipe sizes as being representative of actual oil sites. The calculated and measured permeabilities are in good agreement.

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.