• 제목/요약/키워드: driver wheel

검색결과 140건 처리시간 0.021초

졸음 검출을 위한 EDA신호의 동잡음 제거법(II) (Cancellation of Moving Artifact in EDA Signal to Detect Drowsiness(II))

  • 고한우;김연호
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권3호
    • /
    • pp.323-329
    • /
    • 1999
  • 본 연구에서는 피부전기활동을 이용한 졸음 검출시 발생되는 동잡음 제거법을 제안하였다. 운전 조작시 발생하는 동잡음을 제거할 수 없는 기존의 핸들형 전극의 문제점을 해결하기 위하여 두 종류의 손목형 전극을 개발하였으며, 세 종류의 전극을 비교 실험한 결과, type I 전극을 개선한 손목형 전극 II가 동잡음 제거에 가장 효과적이었다. 가상 운전 실험을 통하여 동잡음 판별기준(IRI$\leq$10과 1.1$\leq$dNz)을 설정하고 이 기준을 동시에 만족하는 경우의 Nz값을 동잡음 발생이전의 Nz값으로서 치환하는 동잡음 제거 알고리즘을 개발하였다. 가상 및 도로 주행 실험결과 제안된 알고리즘은 동잡을 성공적으로 제거할 수 있었으며, 본 연구에서 제안된 알고리즘의 개선된 전극을 이용하여 구현된 시스템은 동일한 영향을 받지 않고 각성상태를 정확히 측정할 수 있음을 확인하였다.

  • PDF

경찰 오토바이 시뮬레이터의 동역학에 관한 연구 (A Study on the Dynamics of Police Motorcycle Simulator)

  • 안동혁;조성현;김희철
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.533-542
    • /
    • 2020
  • 본 연구에서는 기동 순찰대 오토바이 가상훈련 시스템 구현의 개발 기술을 바탕으로 PC를 기반으로 한 모터사이클 시뮬레이터를 개발하였다. 모터사이클 시뮬레이터를 현실감 있게 직접 운전하고 있다는 느낌을 받도록 하기 위해서는 운전자와 시뮬레이터 사이에서 상호 신뢰성 있는 신호의 전달 및 조작 느낌이 중요하다. 이를 위해서 실차와 동일한 조작 느낌을 생성하기 위하여 실차의 각 서브시스템이 모터사이클 시뮬레이터에 그대로 적용될 수 있는 방법에 대한 연구를 수행하여 시스템을 구축하였으며, 이러한 결과를 바탕으로 운전자에게 현실감 있는 조작 느낌을 제공할 수 있는 피드백 큐 생성 방법을 개발하였다. 차량 동역학은 차량 시뮬레이터에 탑승한 운전자가 운전 중 조작하는 조향 휠, 가감속 페달 등으로부터 입력을 받아 실시간으로 차량의 운동을 예측하고, 그 결과를 시각, 음향 시스템에 전달하여 필요한 시각 및 운동 큐를 생성케 하는 시뮬레이터의 중심요소이다. 시뮬레이션 동역학 주요 요구내용에 대해 정리하고자 한다.

횡방향 거동 특성을 고려한 부하모사 시스템 해석 (Analysis of Load Simulating System Considering Lateral Behavior of a Vehicle)

  • 김효준
    • 한국산학기술학회논문지
    • /
    • 제20권5호
    • /
    • pp.621-626
    • /
    • 2019
  • 자동차의 과도한 차체 운동과 조종 불안정성을 유발하는 대표적인 외란 입력으로는 운전자에 의해 가해지는 조향 핸들 조작이다. 급격하고 과도한 핸들 조작은 SUV 차량처럼 기하학적 및 동역학적 특성에 따라 차량 전복 현상도 발생시킬 수 있다. 본 연구에서는 이에 대응할 수 있는 제어 시스템의 구조화에 대하여 다음과 같이 기초 연구를 수행하였다. 운전자 조종으로 유발되는 횡방향 거동에 대한 수학적 모델링을 수행하고, 이를 토대로 차체 운동을 제어할 수 있는 제어기를 설계하였다. 파라미터 불확실성으로 인한 모델링 오차에 대해 강건한 제어 성능을 확보하기 위하여 $H_{\infty}$ 알고리즘을 적용하였다. 비 연성화된 1/4 차량을 기반으로, 차체에 작용하는 모우멘트에 상응하는 동적 부하를 모사할 수 있는 모델을 제시하였다. 동적 시뮬레이션을 수행하여 부하 모사 모델의 타당성을 파악하였다. 차체- 차축- 서스펜션- 타이어로 조합되는 1/4 실험 차량 장치와 부하 모사 모듈, 서스펜션 제어 모듈 및 Hils 기술을 적용하는 차체 거동 제어 시스템에 대한 프레임워크를 제안하였다.

수송 트레일러의 충격흡수장치 개발(III) -평판 스프링 현가장치- (Development of Vibration Absorption Device for the Transportation-Trailer System (III) - Leaf Spring Suspension Device -)

  • 홍종호;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제33권4호
    • /
    • pp.224-229
    • /
    • 2008
  • This study was aimed to minimize the impact force and vibration transmitted to the transporting materials from the trailer and wheel shaft by installing the leaf spring suspension device at the space between the wheel shaft and frame of power tiller trailer. The developed trailer equipped with leaf spring suspension device was compared to the existing trailer without suspension device, in order to identify the vibration absorption effect of the leaf spring. The results of this study could be summarized as follows; (1) The length and the maximum bending amount of the leaf spring were designed as 1,000 mm and 42 mm, respectively, considering the possible space for installing at below the trailer. When 4 leaf springs were installed on both wheel shafts, the allowable maximum load was identified as 9,418 N. (2) The average vibration accelerations for the frequency less than 20 Hz, where the severe transporting loss could be represented, were $0.017\;m/s^2$ and $0.133\;m/s^2$ for the developed and the existing trailer, respectively, showing the vibration absorption effect of about 87%. And the average vibration accelerations on the driver's seat for the frequency less than 20 Hz were $0.01\;m/s^2$ and $0.20\;m/s^2$ for the developed and the existing trailer, respectively, which showed the similar vibration absorption effect. (3) The change of the average vibration accelerations for the frequency from 20 Hz to 80 Hz showed the similar tendency with the result for the frequency less than 20 Hz, but the effect for developed trailer was reduced slightly. And the effect of vibration absorption for the above 80 Hz was reduced highly. However, by installing the leaf spring suspension device at the trailer, the low frequency below 40 Hz, which could affect on transporting loss severely, could be reduced highly. (4) The maximum vibration acceleration for the frequency less than 20 Hz were $0.027\;m/s^2$ and $1.267\;m/s^2$ for the developed and the existing trailer, respectively. And the change of maximum acceleration between 20 Hz and 120 Hz was showed similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

트랙터용 토로이달 무단변속기 제어시스템 개발(II) - PID 콘트롤러 개발 - (Development of a Toroidal CVT Controller for Agricultural Tractor (II) - PID controller -)

  • 김효중;류관희
    • Journal of Biosystems Engineering
    • /
    • 제29권5호
    • /
    • pp.407-418
    • /
    • 2004
  • There are several different types of continuously variable transmission(CVT) such as toroidal drive, belt drive, hydrostatic drive, hydro-mechanical drive. The toroidal CVT is an alternative to the manual transmission, HST, power-shift gear trans-missions or other CVTs. The driver of the CVT tractor doesn't have to operate a shia lever since the CVT controller automatically controls the speed of tractor. Thus, it is much easier to operate the CVT tractor. The fuel efficiency of CVT tractor can be increased since the controller responds quickly to the change in external load on the wheel during field operation. This study was conducted to develop the hardwares and softwares for the toroidal CVT controller which control the variator and the range clutches. The hardware consisted of a measurement system, hydraulic system and computer. And the PID controller was developed using the simulation model of the CVT control system. Through the simulation, the control coefficients for the PID controller were selected. Finally, the performance of the CVT control system was evaluated by step response test and torque response test. The settling time of the CVT control system appeared to be fast enough for field operations.

CAE를 이용한 브레이크 저더 해석 (An automobile brake judder analysis using CAE)

  • 김홍주;김석;강희용;양성모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.507-510
    • /
    • 2005
  • Brake judder, which occurs when brakes are suddenly applied to a vehicle driving at high speed, affects the driver's safety to a great extent. It also has a low frequency that drivers can easily feel. Among theses presented, none offered studies using modeling of actual brakes in computer simulation in order to recreate the brake judder phenomenon, and most of them directly applied the frequency generated by the judder. To resolve this issue, this study hopes to develop a computer model that can recreate the phenomenon of brake judder. In this paper, in order to examine the vibration problem occurring when brake is applied on the test car, the multibody dynamic analysis program ADAMS was used to develop a computer model that can recreate the actual braking mechanism while breaking away from the existing understanding of brakes. Thus the existence of the brake judder phenomenon due to DTV(Dist Thickness Variation) and wheel rotating speed was examined through the developed model.

  • PDF

PXI embedded real-time controller를 이용한 Bimodal-tram Simulator (Bimodal-tram Simulator using PXI Embedded Real-time Controllers)

  • 변윤섭;김영철
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.645-650
    • /
    • 2010
  • In this paper we present the Bimodal-tram simulator using the PXI embedded real-time controllers. The Bimodal-tram is developed in KRRI (Korea Railroad Research Institute). The vehicle can be automatically operated by navigation control system (NCS). For the automatic driving, the vehicle lanes will be marked with permanent magnets that are placed in the ground. The vehicle is controlled by NCS. NCS governs the manual mode and automatic mode driving. The simulator is designed by an identical conception with the real control condition. The dynamic motion of vehicle is simulated by the nonlinear dynamic model. The control computer calculates the control values. The signal interface is linked by CAN communication. The simulation is processed by real-time base. The test driver can see the graphic motion of vehicle and can operate the steering wheel, gas and brake pedal to control direction and velocity of vehicle during the simulation. At present, the simulator is only operated by manual mode. The automatic mode will be linked after the control algorithm is finished. We will use the simulator to develop the control algorithm in the automatic mode. This paper shows the simulator designed for Bimodal-tram using real-time based controller. The results of the test using the simulator are presented and discussed.

MULTI-SENSOR DATA FUSION FOR FUTURE TELEMATICS APPLICATION

  • Kim, Seong-Baek;Lee, Seung-Yong;Choi, Ji-Hoon;Choi, Kyung-Ho;Jang, Byung-Tae
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권4호
    • /
    • pp.359-364
    • /
    • 2003
  • In this paper, we present multi-sensor data fusion for telematics application. Successful telematics can be realized through the integration of navigation and spatial information. The well-determined acquisition of vehicle's position plays a vital role in application service. The development of GPS is used to provide the navigation data, but the performance is limited in areas where poor satellite visibility environment exists. Hence, multi-sensor fusion including IMU (Inertial Measurement Unit), GPS(Global Positioning System), and DMI (Distance Measurement Indicator) is required to provide the vehicle's position to service provider and driver behind the wheel. The multi-sensor fusion is implemented via algorithm based on Kalman filtering technique. Navigation accuracy can be enhanced using this filtering approach. For the verification of fusion approach, land vehicle test was performed and the results were discussed. Results showed that the horizontal position errors were suppressed around 1 meter level accuracy under simulated non-GPS availability environment. Under normal GPS environment, the horizontal position errors were under 40㎝ in curve trajectory and 27㎝ in linear trajectory, which are definitely depending on vehicular dynamics.

Lateral Vehicle Control Based on Active Flight Control Technology

  • Seo Young-Bong;Choi Jae-Weon;Duan Guang Ren
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.981-992
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle (CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to follow a chosen variable without significant motion change in other specified variables. The analysis techniques for decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling (i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

AGT 시스템 교량-차량 상호작용에 의한 교량응답 시뮬레이션 및 실험 (The Simulation and Experimental Study on the Bridge Response of AGT Bridge - Vehicle interaction System)

  • 나상주;김기봉;송재필;김현호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.395-400
    • /
    • 2007
  • LRT(Light Railway Train), which is a intermediate system of train and bus, is arose for the solution of subway construction cost and the transportation capacity of bus. LRT was introduced in 1980's. About 30 local governments are plan to introduce LRT or constructing LRT, at present. AGT(Automated Guide-way Transit) system, which is a kind of LRT, is operated without driver. Rubber wheeled AGT system can reduce the noise and vibration compare to steel wheeled AGT, so it is estimated as ideal transportation system for urban area. And live loads at bridge are classified as the static load of vehicle and the dynamic wheel contact load which is occurred from the interaction of bridge and vehicle vibration, and the surface roughness. In the case of AGT system, the dynamic increment factor of bridge is greater than the normal train bridge and roadway bridge, because, the weight of AGT vehicle is more light that the train of truck. The exact method for dynamic increment factor is experiment. But this method is needed much money and time, moreover, this method cannot be adopted in design. Therefore, a simulation program for the interaction of AGT bridge, vehicle and surface roughness was developed, in this study. And the program was verified by experiment. As a result, the accuracy of the simulation program can be verified.

  • PDF