• Title/Summary/Keyword: driver assistance system

Search Result 185, Processing Time 0.031 seconds

Nearby Vehicle Detection in the Adjacent Lane using In-vehicle Front View Camera (차량용 전방 카메라를 이용한 근거리 옆 차선 차량 검출)

  • Baek, Yeul-Min;Lee, Gwang-Gook;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.996-1003
    • /
    • 2012
  • We present a nearby vehicle detection method in the adjacent lane using in-vehicle front view camera. Nearby vehicles in adjacent lanes show various appearances according to their relative positions to the host vehicle. Therefore, most conventional methods use motion information for detecting nearby vehicles in adjacent lanes. However, these methods can only detect overtaking vehicles which have faster speed than the host vehicle. To solve this problem, we use the feature of regions where nearby vehicle can appear. Consequently, our method cannot only detect nearby overtaking vehicles but also stationary and same speed vehicles in adjacent lanes. In our experiment, we validated our method through various whether, road conditions and real-time implementation.

The study for image recognition of unpaved road direction for endurance test vehicles using artificial neural network (내구시험의 무인 주행화를 위한 비포장 주행 환경 자동 인식에 관한 연구)

  • Lee, Sang Ho;Lee, Jeong Hwan;Goo, Sang Hwa
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.26-33
    • /
    • 2005
  • In this paper, an algorithm is presented to recognize road based on unpaved test courses image. The road images obtained by a video camera undergoes a pre-processing that includes filtering, gray level slicing, masking and identification of unpaved test courses. After this pre-processing, a part of image is grouped into 27 sub-windows and fed into a three-layer feed-forward neural network. The neural network is trained to indicate the road direction. The proposed algorithm has been tested with the images different from the training images, and demonstrated its efficacy for recognizing unpaved road. Based on the test results, it can be said that the algorithm successfully combines the traditional image processing and the neural network principles towards a simpler and more efficient driver warning or assistance system.

  • PDF

Illumination-Robust Lane Detection Algorithm using CIEL *C*h (CIEL * C * h를 이용한 조도변화에 강인한 차선 인식 연구)

  • Pineda, Jose Angel;Cho, Yoon-Ji;Sohn, Kwang-hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.891-894
    • /
    • 2017
  • Lane detection algorithms became a key factor of advance driver assistance system (ADAS), since the rapidly increasing of high-technology in vehicles. However, one common problem of these algorithms is their performance's instability under various illumination conditions. We recognize a feasible complementation between image processing and color science to address the problem of lane marks detection on the road with different lighting conditions. We proposed a novel lane detection algorithm using the attributes of a uniform color space such as $CIEL^*C^*h$ with the implementation of image processing techniques, that lead to positive results. We applied at the final stage Clustering to make more accurate our lane mark estimation. The experimental results show the effectiveness of our method with detection rate of 91.80%. Moreover, the algorithm performs satisfactory with changes in illumination due to our process with lightness ($L^*$) and the color's property on $CIEL^*C^*h$.

An Overheight Warning System for High Height Vehicles (전고가 높은 차량을 위한 통과 높이 경고 시스템)

  • Kim, Tae-Won;Ok, Seung-Ho;Heo, Gyeongyong;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.849-856
    • /
    • 2020
  • Recently, as the number of high-height vehicles such as double-decker buses has increased, collision accidents have occurred in bridges and tunnels due to the deviation from the designated routes and driver's carelessness. In the case of the existing front collision warning system, it is limited to vehicles and pedestrians, so it is difficult to use it as a pass height warning system for the high height vehicles. In this paper, we propose a system that generates a warning by determining the correlation and time series characteristics of data for each segment using multiple lidar sensors and then determining the possibility of collision in the upper part of the vehicle. Also, the proposed system confirmed the proper operation through a real-time driving test and a system performance evaluation by the Korea Automobile Testing & Research Institute.

Development of ISO 26262 based Requirements Analysis and Verification Method for Efficient Development of Vehicle Software

  • Kyoung Lak Choi;Min Joong Kim;Young Min Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.219-230
    • /
    • 2023
  • With the development of autonomous driving technology, as the use of software in vehicles increases, the complexity of the system increases and the difficulty of development increases. Developments that meet ISO 26262 must be carried out to reduce the malfunctions that may occur in vehicles where the system is becoming more complex. ISO 26262 for the functional safety of the vehicle industry proposes to consider functional safety from the design stage to all stages of development. Specifically at the software level, the requirements to be complied with during development and the requirements to be complied with during verification are defined. However, it is not clearly expressed about specific design methods or development methods, and it is necessary to supplement development guidelines. The importance of analysis and verification of requirements is increasing due to the development of technology and the increase of system complexity. The vehicle industry must carry out developments that meet functional safety requirements while carrying out various development activities. We propose a process that reflects the perspective of system engineering to meet the smooth application and developmentrequirements of ISO 26262. In addition, the safety analysis/verification FMEA processforthe safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to autonomous vehicles and the results were confirmed. In addition, the safety analysis/verification FMEA process for the safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to the advanced driver assistance system and the results were confirmed.

Development of Traffic Prediction and Optimal Traffic Control System for Highway based on Cell Transmission Model in Cloud Environment (Cell Transmission Model 시뮬레이션을 기반으로 한 클라우드 환경 아래에서의 고속도로 교통 예측 및 최적 제어 시스템 개발)

  • Tak, Se-hyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.68-80
    • /
    • 2016
  • This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.

2D LiDAR based 3D Pothole Detection System (2차원 라이다 기반 3차원 포트홀 검출 시스템)

  • Kim, Jeong-joo;Kang, Byung-ho;Choi, Su-il
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.989-994
    • /
    • 2017
  • In this paper, we propose a pothole detection system using 2D LiDAR and a pothole detection algorithm. Conventional pothole detection methods can be divided into vibration-based method, 3D reconstruction method, and vision-based method. Proposed pothole detection system uses two inexpensive 2D LiDARs and improves pothole detection performance. Pothole detection algorithm is divided into preprocessing for noise reduction, clustering and line extraction for visualization, and gradient function for pothole decision. By using gradient of distance data function, we check the existence of a pothole and measure the depth and width of the pothole. The pothole detection system is developed using two LiDARs, and the 3D pothole detection performance is shown by detecting a pothole with moving LiDAR system.

Development of a Vehicle Positioning Algorithm Using In-vehicle Sensors and Single Photo Resection and its Performance Evaluation (차량 내장 센서와 단영상 후방 교차법을 이용한 차량 위치 결정 알고리즘 개발 및 성능 평가)

  • Kim, Ho Jun;Lee, Im Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2017
  • For the efficient and stable operation of autonomous vehicles or advanced driver assistance systems being actively studied nowadays, it is important to determine the positions of the vehicle accurately and economically. A satellite based navigation system is mainly used for positioning, but it has a limitation in signal blockage areas. To overcome this limitation, sensor fusion methods including additional sensors such as an inertial navigation system have been mainly proposed but the high sensor cost has been a problem. In this work, we develop a vehicle position estimation algorithm using in-vehicle sensors and a low-cost imaging sensor without any expensive additional sensor. We determine the vehicle positions using the velocity and yaw-rate of a car from the in-vehicle sensors and the position and attitude of the camera based on the single photo resection process. For the evaluation, we built a prototype system, acquired test data using the system, and estimated the trajectory. The proposed algorithm shows the accuracy of about 40% higher than an in-vehicle sensor only method.

A Study on the Development Plan of Aerospace Industry and the Activation of Digital Aerospace Industry - Focused on the Gimpo Area - (항공산업발전계획과 디지털항공산업의 활성화에 관한 연구 - 김포지역을 중심으로 -)

  • Cho, Jeong-Hwan;Yoon, Kyung-Bae
    • Journal of Digital Convergence
    • /
    • v.9 no.3
    • /
    • pp.59-67
    • /
    • 2011
  • The World aerospace industry grows consistently with the development digital technology. We study the activation of the digital aerospace industry based on avionics system, with respect to demand, system and industrial structure in the gimpo area. The strategy is made for aerospace industry to be a growth driver and then we suggest some projects to carry out it. Those are lasting creation of aerospace demand, possession of core part material and competitive digital technology, construction infrastructure for activation of system operation, improvement of administrative assistance system and finally strengthening policy modulation between civil, company, army, academy, and government. Therefore, it is possible to develop into it focusing the MRO and the Helicopter, if we complement systems related in the field of administration and Industry.

Design of Off-axis Wide Angle Lens for the Automobile Application

  • Kim, Tae Young;Shin, Min-Ho;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.336-343
    • /
    • 2013
  • Recently various types of driver assistance systems have been used for automobiles. In 2008, the U.S Congress passed a law which required that most cars be equipped with devices to warn objects behind the vehicle. Because of that, market of rear view cameras is expected to rise dramatically. Therefore many suppliers try to provide a wide angle camera for car makers. But a high distortion is caused by the wide angle might result in lower image quality. In order to improve the image quality, normally we use an algorithm to correct a distortion. Though we can improve the distorted image by correction algorithm, we must pay more cost to use it. In this paper, we propose a new optical system reducing a distortion in contrast to a conventional lens without cost. In other words, we can see only an area of interest. That is similar to reducing a field of view. Using a new optical system, we can get a less distorted image. In order to view an area of interest, we introduce an off axis optical system having refractive surfaces and reflective surfaces. In this paper, we describe the results of design and, evaluation of an off axis wide angle compact imaging system. In comparison to conventional wide angle lens, we can get the improvement of MTF, distortion, and lateral color aberrations. And we also can reduce a total cost because we don't need the outer apparatus or bracket to mount on the car.