• Title/Summary/Keyword: driver's workload

Search Result 44, Processing Time 0.019 seconds

Effects of Advancing Age on Drivers' Cognitive Workload (연령 증가에 따른 주행 중 인지 부하의 특성 변화)

  • Lee, Yong-Tae;Kim, Man-Ho;Son, Joon-Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • Driving is a complex psychomotor task often interrupted by secondary activities that increase cognitive workload and divert attention away from the roadway. The risk of inattentive driving is known to vary with age. To assess the characteristics of advancing age on driver's cognitive workload under dual task condition, we evaluate the performance of 96 drivers divided into three age groups: 20's, 40's, and 60's. This study considers driver's cognitive workload in the context of urban and highway driving. Error rate & Dual task cost are used to measure driver's cognitive workload. Results indicate that age impacts cognitive workload during dual task driving conditions.

Comparative Study on Difference in Driver's Workload between Driving Simulator and Field Driving in Tunnel, Highway (드라이빙 시뮬레이터 주행과 현장주행시 운전자 반응 비교 연구)

  • Kim, Hyun Jin;Kim, Ju Young;Choi, Gyeong Im;Ju, Che Hong;OH, Cheol
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.139-145
    • /
    • 2017
  • PURPOSES : This study analyzed the difference in a driver's workload between using a driving simulator and field driving in tunnel, highway. METHODS : Based on the literature review, it was found that a driver's workload could be quantified using biosignals. This study analyzed the biosignal data of 30 participants using data collected while they were using a driving simulator and during a field test involving tunnel driving. Relative energy parameter was used for biosignal analysis. RESULTS : The driver's workload was different between the driving simulator and field driving in tunnels, highway. Compared with the driving simulator test, the driver's workload exhibited high value in field driving. This result was significant at the 0.05 level. The same result was observed before the tunnel entrance section and 200 m after the entrance section. CONCLUSIONS : This study demonstrates the driving simulator effect that drivers feel safer and more comfortable using a driving simulator than during a field test. Future studies should be designed considering the result of this study, age, type of simulator, study site and so on.

Prediction of Driver's Cognitive Workload using Cognitive Architecture : ACT-R (ACT-R 인지 아키텍처를 이용한 운전자의 인지 부하 측정)

  • Lim, Soo-Yong;Myung, Ro-Hae;Hong, Gi-Beom
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.187-195
    • /
    • 2012
  • The driver model based on the ACT-R cognitive architecture was developed in order to predict the performance and cognitive workload of a driver operating HVI devices. In the 10 HVI tasks, the predicted performance time and cognitive workload by the ACT-R driver model was well matched and highly correlated with the mean of performance times and subjective workload ratings from 15 participants, respectively. It is strongly proposed that the ACT-R driver model in this study can be applied to evaluate the usability of a new HVI design with less cost in the early stage of system development.

Adaptive Multimodal In-Vehicle Information System for Safe Driving

  • Park, Hye Sun;Kim, Kyong-Ho
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.626-636
    • /
    • 2015
  • This paper proposes an adaptive multimodal in-vehicle information system for safe driving. The proposed system filters input information based on both the priority assigned to the information and the given driving situation, to effectively manage input information and intelligently provide information to the driver. It then interacts with the driver using an adaptive multimodal interface by considering both the driving workload and the driver's cognitive reaction to the information it provides. It is shown experimentally that the proposed system can promote driver safety and enhance a driver's understanding of the information it provides by filtering the input information. In addition, the system can reduce a driver's workload by selecting an appropriate modality and corresponding level with which to communicate. An analysis of subjective questionnaires regarding the proposed system reveals that more than 85% of the respondents are satisfied with it. The proposed system is expected to provide prioritized information through an easily understood modality.

A study on the relationship between the time for a driver implement driving secondary task and mental workload due to the speed changes in driving simulation. (시뮬레이터 환경에서 속도변화에 따른 운전자의 이차과제 수행시간과 정신적 부하와의 관계에 대한 연구)

  • Son, Je-Sung;Yu, Seung-Dong;Kim, Jin-Ho;Park, Peom
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.114-119
    • /
    • 2002
  • In driving situation, driver’s performance can be divided into primary task and secondary task. Many studies of primary task have been in progress, but those of secondary task are not implemented sufficiently. However, the driver’s error is greatly influenced by secondary task. In this study, an experiment was assessed to determine the relationship between the driver's operation time for the secondary task and mental workload due to speed changes in a driving simulation. The time to perform the secondary task was analyzed with Fitts’ Law, and mental workload was analyzed with RNASA-TLX(Revision of NASA-Task Load Index). The results has showed that the higher speed, the weaker the explanation by the use of Fitts' Law and the result of analyzing mental workload using RNASA-TLX was similar to the result of Fitts’ Law.

  • PDF

Study on Evaluation Method of Driver's Cognitive Workload with using In-Vehicle Information Systems (차량정보기기 사용에서 운전자의 인지부담 평가방법에 관한 연구)

  • Jeon, Yong-Wook
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.735-739
    • /
    • 2010
  • Driving workload is increasing according to developing new in-vehicle devices and introducing driving information systems. In this research using a driving simulator, EFRP (Eye Fixation Related Potential) was measured for evaluating driving attention and distraction while tasking cognitive workload, n-back tasks. The result of EFRP was compared with driver behaviors. Results suggest that EFRP is able to use for a method of evaluating driving workload, however, the analysis of driver behavior is difficult to find driving attention and distraction in the case of free flow of traffic situation.

Development of a Workload Assessment Index Based on Analyzing Driving Patterns (운전자 주행패턴을 반영한 작업부하 평가지표 개발)

  • KIM, Yunjong;LEE, Seolyoung;CHOI, Saerona;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.6
    • /
    • pp.545-556
    • /
    • 2017
  • Various assessment indexes have been developed and utilized to evaluate the driver workload. However, existing workload assessment indexes do not fully reflect driving habits and driving patterns of individual drivers. In addition, there exists significant differences in the amount of workload experienced by a driver and the ability to overcome the driver's workload. To overcome these limitations associated with existing indexes, this study has developed a novel workload assessment index to reflect an individual driver's driving pattern. An average of the absolute values of the steering velocity for each driver are set as a threshold value in order to reflect the driving patterns of individual drivers. Further, the sum of the areas of the steering velocities exceeding the threshold value, which is defined as erratic steering area (ESA) in this study, was quantified. The developed ESA index is applied in evaluating the driver workload of manually driven vehicles in automated vehicle platooning environments. Driving simulation experiments are conducted to collect drivers' responsive behavior data which are used for exploring the relationship between the NASA-TLX score and the ESA by the correlation analysis. As a result, ESA is found to have the greatest correlation with the NASA-TLX score among the various driver workload evaluation indexes in the lane change scenario, confirming the usefulness of ESA.

A Study on Workload of Using Telematics while Driving (주행 중 Navigation 사용에 의한 운전부하에 관한 연구)

  • Koo, Tae-Yun;Kim, Bae-Young;Ji, Sung-Ho;Bae, Chul-Ho;Park, Jung-Hoon;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.26-33
    • /
    • 2009
  • New equipment that is useful for driving is developing every day. Navigation is one of the most popular equipment among them. Telematics market including navigation is getting bigger and bigger. However, traffic accident from using telematics equipment is also increasing. Drivers may lose glance using navigation, and driver's workload will also grow by driver's distraction. This thesis is base on the study about the influence on the drivers' workload by using the telematics equipment. Previous study of drivers' workload used psychological method and behavior test method, but it was less connection with telematics equipment. The main object of this thesis is measuring the workload according to the telematics usage by HMI (Human Machine Interface) in the virtual reality. Therefore, we developed GPS simulator, and made an experiment of whether using the navigation or not on the highway and an experiment of the location of navigation in downtown. The result of these experiments is that workload when driver used navigation was higher than when driver didn't use navigation. In addition, workload was different according to the location, and HUD (Head-Up Display) was especially higher than other locations but also its information delivery ability was the best.

Human Sensibility Ergonomics Evaluation of the Car Navigation System Digital Map (자동차 항법장치 도로지도의 감성공학적 평가에 관한 연구)

  • Cha, Doo-Won;Paek, Seung-Reu;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.101-111
    • /
    • 1998
  • CNS (Car Navigation System) is the most compatible candidate among various in-vehicle information systems as a provider of ITS (Intelligence Transport Systems) information. It generally consists of remote controller, display, CD-changer, GPS receiver and so on. Among them, display is the most important and critical element of the HMI (Human-Machine Interface) suggesting the digital map to the driver. Therefore, it is certain that the display gives cognitive, physical, mental and visual workloads to the driver which are directly related with the driver's and road safety with the success of ITS. Until now, various human factors techniques have been developed and applied to estimate the driver's workload and to collect the driver's requirements of the CNS digital map, for example, mental workload assessment, visual activity analysis, cognitive analysis and so on. In addition to these kinds of techniques, this research performed the human sensibility ergonomics approach to directly investigate and evaluate the driver's requirements and sensibilities of the real products.

  • PDF

Driver Workload Comparisons among Road Sections of Automated Highway Systems (자동주행 시스템 구간별 운전자 부하 비교 연구)

  • Cha, Du-Won;Park, Beom
    • Proceedings of the KOR-KST Conference
    • /
    • 2003.02a
    • /
    • pp.119-126
    • /
    • 2003
  • The aim of this research was to compare driver's workload among AHS (Automate Highway Systems) road sections in a virtual AHS environment that is based on a re Korean expressway in order to predict and compare the workloads imposed by the change (driver-vehicle interface and vehicle control authority. Road sections included the M (Manual Lane), TL1 (Transition Lane to enter the automated lane), AL (Automated Lane TL2 (Transition Lane to enter the manual lane after the end of automated driving), an post-AHS manual lane.

  • PDF