• 제목/요약/키워드: drilling force

검색결과 157건 처리시간 0.032초

Suppression of tension variations in hydro-pneumatic riser tensioner by using force compensation control

  • Kang, Hooi-Siang;Kim, Moo-Hyun;Bhat Aramanadka, Shankar S.;Kang, Heon-Yong;Lee, Kee-Quen
    • Ocean Systems Engineering
    • /
    • 제7권3호
    • /
    • pp.225-246
    • /
    • 2017
  • Excessive dynamic-tension variations on the top-tensioned risers (TTRs) deteriorate the structural integrity and cause potential safety hazards. This phenomenon has become more remarkable in the development of deep-water fields with harsher environmental loads. The conventional prediction method of tension variations in hydro-pneumatic tensioner (HPT) has the disadvantage to underestimate the magnitude of cyclic loads. The actual excessive dynamic tension variations are larger when considering the viscous frictional fluid effects. In this paper, a suppression method of tension variations in HPT is modeled by incorporating the magneto-rheological (MR) damper and linear-force actuator. The mathematical models of the combined HPT and MR damper are developed and a force-control scheme is introduced to compensate the excessive tension variations on the riser tensioner ring. Numerical simulations and analyses are conducted to evaluate the suppression of tension variations in HPT under both regular- and irregular-wave conditions for a drilling riser of a tensioned-leg platform (TLP). The results show that significant reduction of tension variations can be achieved by introducing the proposed system. This research has provided a theoretical foundation for the HPT tension control and related structural protection.

버형성 최소화를 위한 스텝드릴 형상 개발 (Development of Step Drill Geometry for Burr Minimization)

  • 장재은;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.1043-1046
    • /
    • 2002
  • In this paper, drill tests were carried out by modifying drill geometry for burr minimization. Final objective of this study is to develop compatible drill shape for minimization of burr formation. These experimented results with modified drill are measured with laser sensor after performing drilling with variable material. Simultaneously, the cutting force and the torque of various drill geometry have been observed with same cutting condition to judge drill stability. As a result, burr was minimized in step drill with 75$^{\circ}$ step angle at every material.

  • PDF

고강성 병렬형 로봇의 최적 여유 구동 (Optimal Redundant Actuation of Parallel Manipulators with High Operational Stiffness)

  • 김성복
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.181-189
    • /
    • 2000
  • This paper presents the optimal redundant actuation of parallel manipulators for complicated robotic applications such as cutting grinding drilling and digging that require a high degree of operational stiffness as well as the balance between force applicability and dexterity. First by taking into account the distribution(number and location) of active joints the statics and the operational stiffness of a redundant parallel manipulator are formulated and the effects of actuation redundancy are analyzed, Second for given task requirements including joint torque limit task force maximum allowable disturbance and maximum allowable deflection the task execution conditions of a redundant parallel manipulator are derived and the efficient testing formulas are provided. Third to achieve high operational stiffness while maintaining moderate dexterity the redundant actuation of a parallel manipulator is optimized which determines the optimal distribution of active joints and the optimal internal joint torque, Finally the simulation results for the optimal redundant actuation of a planar parallel manipulator are given.

  • PDF

원주가압형 디스크의 형상변화가 온도분포에 미치는 영향에 관한 연구 (A Study on Effect of Temperature Distribution in Shape Change of the Circumferential Pressing Type Disc)

  • 김형훈;이성욱;한동섭;한근조
    • 한국기계가공학회지
    • /
    • 제6권4호
    • /
    • pp.86-91
    • /
    • 2007
  • The heat generated by the brake system of vehicles results in reduction of friction force on the brake surface and vibration when breaking. These problems play essential part in break's performance. To solve these problems, extensive research has been conducted such as drilling cooling holes on the brake pud, accommodating ventilated holes and etc. In this study, we suggest the compression of brake in circumferential direction in order to improve its cooling performance. And we analyzed comparing temperature distribution which is generated accomplishing heat analysis at each disc.

  • PDF

Study on grout-free smart ground anchor using electromagnetic induction

  • Hyun-Seok Lee;Jong-Kyu Park;Jung-Tae Kim
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.531-542
    • /
    • 2024
  • This study proposes a ground anchor using electromagnetic induction and utilizes an extended structure using hinges and links and mounting and sensing using electromagnets. The aim is to secure the anchor force, excluding grout, and to secure various sensing capabilities, including ground behavior. We propose a design based on the drilling diameter of 150 mm, and the materials used were STS304 and Aluminum 6061-T6. Computerized analysis was performed to confirm structural safety and functional implementation. The pull-out experiment was conducted by simulating the bedrock environment on a model earthwork as an experiment to check whether anchor force was generated by the insertion and tension of the anchor. The environmental pollution of grout, the difficulty of removing strands, and the inability to check whether the anchor is seated, which were pointed out as disadvantages of the existing ground anchor, were solved. Therefore, this study suggest that it can be effectively utilized as a secure and monitored anchoring solution in eco-friendly construction practices, including the installation of landslide prevention barriers.

수의학 훈련을 위한 슬개골 수술 햅틱 시뮬레이터 (A Patellar Surgery Haptic Simulator for Veterinary Training)

  • 이준;엄기동;서안나
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2020
  • 소동물의 슬개골 수술은 인간의 뼈보다 약하여 수술의 난이도가 어렵기 때문에, 소 동물의 슬개골 탈구 치료 수술 과정의 학습은 수의사에게 매우 중요하다. 소 동물의 슬개골 수술 훈련은 사체를 이용한 훈련을 하고 있으나 소 동물의 사체가 부족하기 때문에 시청각 자료나 수술 참관으로 수술을 학습하고 있어 수의학과 학생 및 전문 수의사들에게 충분한 훈련 환경이 제공되지 못하는 상황이다. 본 논문에서는 이러한 문제를 해결하기 위하여 소동물의 슬개골 수술을 위한 햅틱 시뮬레이터를 제안한다. 제안한 시뮬레이터는 슬개골 드릴링 수술에 적용시켰으며 소동물의 드릴링에 대한 Force Feedback을 모델링하고 햅틱 인터페이스를 제공하고, 사용자가 몰입하여 수술 경험을 할 수 있는 워크 벤치를 제공하였다. 본 논문에서 제안된 슬개골 햅틱 시뮬레이터가 제공하는 드릴링 과정에서 햅틱 피드백에 대한 사용자 평가 결과 유의미한 결과를 얻을수 있었다.

고압수 접촉상태가 수압파쇄에 미치는 영향 (The Effects of High Pressure Water Contact State on Hydraulic Fracturing)

  • 이상훈;임종세;장원일
    • 터널과지하공간
    • /
    • 제26권5호
    • /
    • pp.409-417
    • /
    • 2016
  • 본 전통석유자원을 대체할 수 있는 석유자원으로 부상하고 있는 셰일가스가 부존된 셰일층은 낮은 투과성을 가지고 있어 생산성을 향상시키기 위해 수압파쇄법이 적용된다. 본 연구는 일반 시추공과 나선형 홈을 가지는 시추공을 모사한 축소 모형 시험체에 대해 실내수압파쇄 시험을 실행하고 초기파쇄압과 유체접촉상태를 비교 분석하여 공벽형상에 따른 수압파쇄결과를 알아보았다. 또 그 결과를 3차원 개별요소 프로그램인 3DEC을 이용한 수치해석 모델링 값과 비교하였으며, 선행연구 자료와 비교하여 신뢰성 있는 결과를 도출하고자 하였다. 실험결과 고압수의 접촉면적보다는 유도홈의 형태에 의한 응력집중의 효과가 수압파쇄에 더욱 효율적이였다. 따라서 고압수의 응력집중을 높일 수 있는 인공적인 유도홈을 만들 시 적은 수압으로 큰 파쇄효과를 나타낼 수 있을것으로 생각된다.

파이프 원주방향 용접부의 잔류응력 연구 (A study on the residual stresses in circumferential welds of the pipes)

  • 남궁재관;홍재학
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.693-702
    • /
    • 1991
  • The existence of residual stress in the circumferential butt welded pipes is one of the most important problems concerning stress corrosion cracking in service. In this paper, the residual stress distributions in three kinds of circumferential butt welded pipes were measured by the hole drilling strain gage method and calculation using finite element method is performed and its results are compared with the experiments. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed rom compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self restraint bending force in the pipe welding.

탄소섬유복합재 가공의 결함특성 및 결함 저감을 위한 경계검출 (CFRP Drilling Experiments: Investigation on Defect Behaviors and Material Interface Detection for Minimizing Delamination)

  • 김규호;하태인;이찬영;안재훈;김주영;민병권;김태곤;이석우
    • 한국정밀공학회지
    • /
    • 제33권6호
    • /
    • pp.453-458
    • /
    • 2016
  • CFRP (Carbon Fiber Reinforced Plastic) and CFRP-metal stacks have recently been widely used in the aerospace and automobile industries. When CFRP is machined by a brittle fracture mechanism, defect generation behaviors are different from those associated with metal cutting. The machining quality is strongly dependent on the properties of CFRP materials. Therefore, process control for CFRP machining is necessary to minimize the defects of differently manufactured CFRPs. In this study, defects in drilling of CFRP substrates with a variety of fiber directions and resin types are compared with respect to thrust force. An experimental study on material interface detection is carried out to investigate its benefits in process control.

회전 초음파가공 주축 개발에 관한 연구 (A Study on the Development of Rotary Ultrasonic Machining Spindle)

  • 이상평;김민엽;박종권;고태조
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.160-166
    • /
    • 2015
  • Ultrasonic machining (USM) has been considered a new, cutting-edge technology that presents no heating or electrochemical effects, with low surface damage and small residual stresses on brittle workpieces. However, nowadays, many researchers are paying careful attention to the disadvantages of USM, such as low productivity and tool wear. On the other hand, in this study, a high-performance rotary ultrasonic drilling (RUD) spindle is designed and assembled. In this system, the core technology is the design of an ultrasonic vibration horn for the spindle using finite element analysis (FEA). The maximum spindle speed of RUM is 9,600 rpm, and the highest harmonic displacement is $5.4{\mu}m$ noted at the frequency of 40 kHz. Through various drilling experiments on glass workpieces using a CVD diamond-coated drill, the cutting force and cracking of the hole entrance and exit side in the glass have been greatly reduced by this system.