• Title/Summary/Keyword: drilling core

Search Result 118, Processing Time 0.03 seconds

Field Application of Rapid Neutralization Assessment Method Using Core Drilling in Concrete Structures (코어드릴링에 의한 중성화 신속평가 방법을 이용한 콘크리트 구조물의 중성화 현장 적용성 평가)

  • Lim, Gun-Su;Lee, Hyeon-Jik;Beak, Sung-Jin;Lee, Hyuk-Ju;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.15-16
    • /
    • 2023
  • In this paper, we aimed to develop a new method for diagnosing the depth of neutralization in architectural and civil engineering structures using the core drilling method, which combines the speed of drilling with the accuracy of core ringing. When compared to the drilling method, the core drilling method showed a lower measurement deviation of 1-2mm (7.6%) in confirming the depth of neutralization. This is believed to be a result of potential interference during the sample collection process in the drilling method, where the drill may pass through aggregates, leading to overestimation, as indicated in previous studies. The rapid evaluation of neutralization using the core drilling method serves as an alternative to address the issues associated with both drilling and core ringing methods in diagnosing the depth of neutralization. It offers a solution to the inaccuracy caused by coarse aggregates and the cumbersome post-processing steps required for neutralization diagnosis. Our proposed technique aims to provide an accurate and expedited diagnosis of neutralization depth without the need for additional processes.

  • PDF

Drilling Characteristics and Modeling of Diamond Core Drilling Processes (다이아몬드 코어드릴 공정의 구멍가공 특성과 모델링)

  • Yoon, Kwan-Woo;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.95-103
    • /
    • 2008
  • Diamond core drills are applied to drill difficult-to-cut materials. This paper proposes basic understanding of ceramic drilling mechanics and characteristics of main factors affecting tool life, tool wear, cutting force, and chipping thickness. In contrast to conventional drilling, the core drilling process make deep grooves on the workpiece. One difficulty of it is the evacuation of chips from the drilled groove. As the drilling depth increases, an increased amount of chips tend to cluster together and clog the groove. Eventually severe wear develops and diamond grits are separated from the drill body. To relieve the clogging problem and to evacuate chips from the groove easily, the helical drilling process is applied for the core drilling process. To analyze drilling characteristics and derive optimal drilling conditions, tool life, tool wear, cutting force, and chipping thickness are quantified through the monitoring system and the Taguchi method. Mathematical models for the tool life and chipping thickness are derived from the response surface method. Optimal drilling database has been constructed through the experimental models.

A Study on the Influencing Factors on the Estimation of Compressive Strength by Small Size Core (소구경 코어에 의한 콘크리트 압축강도 추정에 미치는 실험인자의 영향에 관한 연구)

  • 한민철;김기정;백병훈;한천구;송성진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.361-364
    • /
    • 2002
  • This paper discusses the influencing factors such as coring position, height to diameter ratio of core specimen(h/d) and coring torque on the strength estimation of concrete by small site coring method in order to verify the validities of small size core method. According to results, as for the influence of drilling position, when core specimens are obtained from the place parallel to placing direction, compressive strength of core specimens are higher than those perpendicular to placing direction. This is due to the loss of the area of core specimen perpendicular to plating direction by bleeding. And in case of $\phi$ 24mm core specimen, when vertical drilling against placing direction is taken. compressive strength of core specimen obtained at the bottom of the structure is higher than that at the top of the structure. As for the influence of height to depth ratio, as h/d ratio increases compressive strength shows to be decreased. As for the influences of rotation speed of drilling machine, as its speed goes up, compressive strength decreases, regardless of core diameter.

  • PDF

Highly Precise and Efficient Drilling of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 고정도, 고능률 드릴링 가공)

  • 박규열;최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3175-3184
    • /
    • 1994
  • The high strength and wear-resistant metal bonded diamond wheel was applied to the drilling process of carbon fiber reinforced plastics (CFRP), The helical-feed drilling method was use for the first time to overcome the limit of drilling depth of the conventional drilling process and to improve the dressing of the wheel. The helical-feed drilling method was found effective at high cutting speed without the limit of drilling depth.

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

Machinability Evaluation of Hybrid Ti2 Ceramic Composites with Conductivity in Micro Electrical Discharge Drilling Operation (전도성을 가지는 하이브리드 Ti2AlN 세라믹 복합체의 마이크로 방전드릴링에서 가공성 평가)

  • Heo, Jae-Young;Jeong, Young-Keun;Kang, Myung-Chang;Busnaina, Ahmed
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.285-290
    • /
    • 2013
  • $Ti_2AlN$ composites are a laminated compounds that posses unique combination of typical ceramic properties and typical metallic(Ti alloy) properties. In this paper, the powder synthesis, SPS sintering, composite characteristics and machinability evaluation were systematically conducted. The random orientation characteristics and good crystallization of the $Ti_2AlN$ phase are observed. The electrical and thermal conductivity of $Ti_2AlN$ is higher than that of Ti6242 alloy. A machining test was carried out to compare the effect of material properties on micro electrical discharge drilling for $Ti_2AlN$ composite and Ti6242 alloy. Also, mixture table as a kind of tables of orthogonal arrays was used to know how parameter is main effective at experimental design. Consequently, hybrid $Ti_2AlN$ ceramic composites showed good machining time and electrode wear shape under micro ED-drilling process. This conclusion proves the feasibility in the industrial applications.

Development for prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment (선진시추장비와 시추공벽 영상화 장비를 이용한 TBM 전방 지반평가시스템 개발)

  • Kim, Ki-Seog;Kim, Jong-Hoon;Jeong, Lae-Chul;Lee, In-Mo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.393-401
    • /
    • 2015
  • In the construction of a TBM tunnel, it is very important to acquire accurate information of the excavated rock mass for an efficient and safe work. In this study, we developed the prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment to predict rock mass conditions of the tunnel face ahead. The prediction system consists of the probe drilling equipment, drilled hole imaging equipment and analysis software. The probe drilling equipment has been developed to be applicable to both non-coring and coring. Also the probe drilling equipment can obtain the drilling parameters such as feed pressure, torque pressure, rotation speed, drilling speed and so on. The drilling index is converted to the drilling index RMR through the correlation between a drilling index and core RMR. The developed system verification was carried out through a slope and tunnel field application. From the field application result, the non-coring is four times faster than a coring and the drilling index RMR and core RMR are similar in the distribution range. This system is expected to predict the rock mass conditions of the TBM tunnel face ahead very quickly and efficiently.

ED-Drilling of $MoSi_2$-matrix Composites ($MoSi_2$ 기지 복합재의 ED-Drilling)

  • 김창호;윤한기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.886-889
    • /
    • 2000
  • This paper describes the machining characteristics of the MoSi$_2$-based composites by electric discharge drilling with various tubular electrodes. MoSi$_2$-based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. In drilling by EDM, the dielectric flushed down the interior of the rotating tube electrode, in order to facilitate the removal of machining debris from the hole. Various metal-coated tubular electrodes of which core are copper and brass are used to know the effect of coating material on machinability of ED drilling.

  • PDF

Measurement Conditions of Concrete Pull-off Test in Field from Finite Element Analysis (유한요소 해석을 이용한 현장 콘크리트 부착강도 측정조건)

  • Kim, Seong-Hwan;Jeong, Won-Kyong;Kwon, Hyuck;Kim, Hyoun-Oh;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.185-192
    • /
    • 2002
  • The performance of old and the new concrete construction depends upon bond strength between old and the new concrete. Current adhesive and strength measurement method ignores the effect of stress concentration from shape of specimens. Therefore, this research calculates stress concentration coefficient as the ratio of drilling depth to drilling diameter($h_s/D$), the ratio of overlay thickness to drilling diameter($h_0/D$), the ratio of steel disk thickness to drilling diameter(t/D), the ratio of overlay elastic modulus to substrate modulus($E_1/E_0$), the distance from core to corner border(L_$_{corner}$) and the distance between cores(L_$_{coic}$) vary. The finite element method is adapted to analysis The results from 'the F.E.M analysis are as follows. The stress concentration effects can be minimized when the ratio of drilling depth to drilling diameter($h_s/D$) is 0.20~0.25, the elastic modulus ratio($E_1/E_0$) is 06~1.0, and the ratio of steel disk thickness to drilling diameter(t/D) is 3.0. The overlay thickness, the distance from specimens to corner border(L_$_{corner}$), the distance between cores(L_$_{coic}$) almost do not affect to the stress concentration.

  • PDF

Development of Discontinuity Orientation Measurement (DOM) Drilling System and Core Joint Analysis Model (Discontinuity Orientation Measurement (DOM) 시추장비 및 코어절리 해석모델 개발)

  • 조태진;유병옥;원경식
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • Field investigations of the orientations of discontinuity planes inside the borehole for designing the underground rock structures have been depend solely on the borehole image-taking techniques. But, borehole image-taking has to be processed after the completion of drilling operation and also requires the handling of highly expensive apparatus so that practical application is very restricted. In this study Discontinuity Orientation Measurement (DOM) drilling system and discontinuity analysis model RoSA-DOM are developed to acquire the reliable information of rock structure by analyzing the characteristics of joint distribution. DOM drilling system retrieves the rock core on which the reference line of pre-fixed drilling orientation is engraved. Coordinates of three arbitrary points on the joint surface relative to the position of reference line are assessed to determine the orientation of joint plane. The position of joint plane is also allocated by calculating the location of core axis at which joint plane is intersected. Then, the formation of joint set is analyzed by utilizing the clustering algorithm. Total and set spacings are calculated by considering the borehole axis as the scanline. Engineering applicability of in-situ rock mass around the borehole is also estimated by calculating the total and regional RQDs along the borehole axis.