• Title/Summary/Keyword: drift ratio

Search Result 373, Processing Time 0.025 seconds

The Effect of Preventing Lateral Deformation of the Clamp Type Steel Damper in Rocking Behavior (록킹 거동을 하는 꺽쇠형 강재 댐퍼의 횡변형 방지 효과)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.141-148
    • /
    • 2021
  • In this study, the technology to prevent lateral deformation of steel dampers was reviewed and applied to the clamp type dampers. As for the experimental method, the rocking behavior was applied as in the previous study. The evaluation variables are the existing research results (SV-260) without lateral deformation prevention details and the test results (V-1, V-1R) with lateral deformation prevention details. Where, V-1 is the lateral deformation prevention detail at the lower part of the damper, and V-1R is the lateral deformation prevention detail at the lower part and upper part of the damper. As a result of evaluating the moment, drift ratio, and energy dissipation capacity relative to SV-260 at the time of maximum load, the maximum moments of V-1 and V-1R were increased by 1.22 times and 1.36 times compared to SV-260, and the maximum drift ratio increased by 2.41 times and 2.92 times. In addition, the energy dissipation capacity also increased by 1.39 times and 1.52 times, respectively. Therefore, the application of lateral deformation prevention details to the steel damper was evaluated as appropriate.

A comparative study on dynamic behavior of high-rise building and low-rise building considering SSI analysis (SSI 해석을 고려한 초고층 및 저층 건물 동적거동 비교 연구)

  • You, Kwang-Ho;Kim, Seung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.973-987
    • /
    • 2018
  • Most of the previous seismic analyses have been carried out by separating the ground and structures, and there is a lack of comparative study on the dynamic behavior of high-rise and low-rise buildings. Therefore, in this study, the sensitivity analysis was performed with selected parameters by using a finite element analysis program in order to grasp the dynamic behavior of high-rise and low-rise buildings. As a result, it was turned out that the horizontal displacement, the interstory drift ratio, and the bending stress of a high-rise building were more affected by a long seismic wave than a low-rise buildings. Also, the weak parts of a high-rise and low-rise building were more affected by type of seismic wave than the ground conditions. Therefore, it is inferred that it will be helpful for seismic designs to consider the influence of ground conditions and seismic wave type on buildings.

Experimental and analytical study of squat walls with alternative detailing

  • Leonardo M. Massone;Cristhofer N. Letelier;Cristobal F. Soto;Felipe A. Yanez;Fabian R. Rojas
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2024
  • In squat reinforced concrete walls, the displacement capacity for lateral deformation is low and the ability to resist the axial load can quickly be lost, generating collapse. This work consists of testing two squat reinforced concrete walls. One of the specimens is built with conventional detailing of reinforced concrete walls, while the second specimen is built applying an alternative design, including stirrups along the diagonal of the wall to improve its ductility. This solution differs from the detailing of beams or coupling elements that suggest building elements equivalent to columns located diagonally in the element. The dimensions of both specimens correspond to a wall with a low aspect ratio (1:1), where the height and length of the specimen are 1.4 m, with a thickness of 120 mm. The alternative wall included stirrups placed diagonally covering approximately 25% of the diagonal strut of the wall with alternative detailing. The walls were tested under a constant axial load of 0.1f'cAg and a cyclic lateral displacement was applied in the upper part of the wall. The results indicate that the lateral strength is almost identical between both specimens. On the other hand, the lateral displacement capacity increased by 25% with the alternative detailing, but it was also able to maintain the 3 complete hysteretic cycles up to a drift of 2.5%, reaching longitudinal reinforcement fracture, while the base specimen only reached the first cycle of 2% with rapid degradation due to failure of the diagonal compression strut. The alternative design also allows 46% more energy dissipation than the conventional design. A model was used to capture the global response, correctly representing the observed behavior. A parametric study with the model, varying the reinforcement amount and aspect ratio, was performed, indicating that the effectiveness of the alternative detailing can double de drift capacity for the case with a low aspect ratio (1.1) and a large longitudinal steel amount (1% in the web, 5% in the boundary), which decreases with lower amounts of longitudinal reinforcement and with the increment of aspect ratio, indicating that the alternative detailing approach is reasonable for walls with an aspect ratio up to 2, especially if the amount of longitudinal reinforcement is high.

A Study of the Change of Hall Effect as a Function of the V/III Ratio in n-GaAs compound Semiconductors

  • Kim, In-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.107-110
    • /
    • 2009
  • In this study, the Hall effect has been studied in n-GaAs samples characterized by V/IIl growth ratios of 25, 50 and 100 and prepared by metal organic chemical vapor deposition. For the Hall effect measurements, the grown samples were cut to a size of 1${\times}$1 cm. The measurements were carried out at room temperature, using Indium contact metal at the four corners of the samples. According to the experimental results, the Schottky effect was not ovservation. Also for the n-GaAs sample of V/Ill 100 ratio the electron drift velocity was very high.

Analysis of Electron Transport Coefficients in Binary Mixtures of TEOS Gas with Kr, Xe, He and Ne Gases for Using in Plasma Assisted Thin-film Deposition

  • Tuan, Do Anh
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.455-462
    • /
    • 2016
  • The electron transport coefficients in not only pure atoms and molecules but also in the binary gas mixtures are necessary, especially on understanding quantitatively plasma phenomena and ionized gases. Electron transport coefficients (electron drift velocity, density-normalized longitudinal diffusion coefficient, and density-normalized effective ionization coefficient) in binary mixtures of TEOS gas with buffer gases such as Kr, Xe, He, and Ne gases, therefore, was analyzed and calculated by a two-term approximation of the Boltzmann equation in the E/N range (ratio of the electric field E to the neutral number density N) of 0.1 - 1000 Td (1 Td = 10−17 V.cm2). These binary gas mixtures can be considered to use as the silicon sources in many industrial applications depending on mixture ratio and particular application of gas, especially on plasma assisted thin-film deposition.

ECG Data Compression and Reconstruction Using a Walsh Transform (왈쉬 변환을 이용한 심전도 데이터 압축 재생)

  • Lee, Kyung-Joong;Yun, Hyung-Ro;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 1986
  • We have implemented data compression and reconstruction by using a fast Walsh transform. The ECG signals were generated by an ECG BimLllator (KONT- RON). The sampling frequency was 480 Hz and the data point number used was 512. In order to eliminate the 60 Hz noise and baseline drift, a digital notch filter was designed. We obtaine!1 a compression ratio of 5 : 1 and at this ratio it was possible to obtain a true diagnosis and an ECG morphology analysis.

  • PDF

Structural safety redundancy-based design method for structure with viscous dampers

  • Hao, Linfei;Zhang, Ruifu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.821-840
    • /
    • 2016
  • A simple design process is proposed for supplemental viscous dampers based on structural safety redundancy. In this process, the safety redundancy of the primary structure without a damper is assessed by the capacity and response spectra. The required damping ratio that should be provided by the supplemental dampers is estimated by taking the structural safety redundancy as a design target. The arrangement of dampers is determined according to the drift distribution obtained by performing pushover analysis. A benchmark model is used to illustrate and verify the validity of this design process. The results show that the structural safety redundancy of the structure provided by the viscous dampers increases to approximately twice that of the structure without a damper and is close to the design target. Compared with the existing design methods, the proposed process can estimate the elastic-plastic response of a structure more easily by using static calculation, and determine the required damping ratio more directly without iterative calculation or graphical process. It can be concluded that the proposed process is simple and effective.

Residual displacement estimation of simple structures considering soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.69-82
    • /
    • 2019
  • As the residual displacement and/or drift demands are commonly used for seismic assessment of buildings, the estimation of these values play a very critical role through earthquake design philosophy. The residual displacement estimation of fixed base structures has been the topic of numerous researches up to now, but the effect of soil flexibility is almost always omitted. In this study, residual displacement demands are investigated for SDOF systems with period range of 0.1-3.0 s for near-field and far-field ground motions for both fixed and interacting cases. The elastoplastic model is used to represent non-degrading structures. Based on time history analyses, a new simple yet effective equation is proposed for residual displacement demand of any system whether fixed base or interacting as a function of structural period, lateral strength ratio and spectral displacement.

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

Multiple characteristic response damage analysis of large-span space structures based on equivalent damping ratio

  • Wei, Jun;Yang, Qingshun;Zhou, Lexiang;Chen, Fei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Due to the large volume and generally as a public building, the damage of large-span space structures under various non-conventional loads will cause greater economic losses, casualties, and social impacts, etc. Therefore, it is particularly important to evaluate the seismic performance of large-span space structures. This paper taked a multipurpose sports center as an example and considered its synergistic deformation based on the method of equivalent damping ratio. Furthermore, The ABAQUS software was used to analyze the time-history and energy response of the multipurpose sports center under the action of rare earthquakes, and proposed a quantitative damage index to assess the overall damage of the structure. Finally, the research results indicated that the maximum inter-story drift ratio of the multipurpose sports center under the action of rare earthquakes was less than its limit value. The frame beams presented different degrees of damage, but the key members were basically in an elastic state. The bearing capacity did not reach the limit value, which satisfied the intended seismic performance target. This study taked an actual case as an example and proposed a relevant damage evaluation system, which provided some reference for the analysis of the seismic performance of large-span space structures.