DOI QR코드

DOI QR Code

The Effect of Preventing Lateral Deformation of the Clamp Type Steel Damper in Rocking Behavior

록킹 거동을 하는 꺽쇠형 강재 댐퍼의 횡변형 방지 효과

  • Lee, Hyun-Ho (Department of Architecture & Fire Safety, Dongyang University)
  • 이현호 (동양대학교 건축소방안전학과)
  • Received : 2021.08.30
  • Accepted : 2021.09.15
  • Published : 2021.10.30

Abstract

In this study, the technology to prevent lateral deformation of steel dampers was reviewed and applied to the clamp type dampers. As for the experimental method, the rocking behavior was applied as in the previous study. The evaluation variables are the existing research results (SV-260) without lateral deformation prevention details and the test results (V-1, V-1R) with lateral deformation prevention details. Where, V-1 is the lateral deformation prevention detail at the lower part of the damper, and V-1R is the lateral deformation prevention detail at the lower part and upper part of the damper. As a result of evaluating the moment, drift ratio, and energy dissipation capacity relative to SV-260 at the time of maximum load, the maximum moments of V-1 and V-1R were increased by 1.22 times and 1.36 times compared to SV-260, and the maximum drift ratio increased by 2.41 times and 2.92 times. In addition, the energy dissipation capacity also increased by 1.39 times and 1.52 times, respectively. Therefore, the application of lateral deformation prevention details to the steel damper was evaluated as appropriate.

본 연구에서는 강재 댐퍼의 횡변형을 방지할 수 있는 기술을 검토하여, 꺽쇠형 댐퍼에 적용하였다. 실험방법은 기존 연구와 같이 록킹 거동을 적용하였다. 평가변수는 횡변형 방지 상세 없는 기존 연구결과(SV-260)와 횡변형 방지 상세가 적용된 V-1과 V-1R이다. 여기서 V-1은 횡변형 방지상세가 댐퍼 하단부에 있으며, V-1R은 횡변형 방지상세가 하단부 및 상단부에 있다. 최대 하중 발현 시, 모멘트, 변위비 및 에너지 소산능력을 SV-260을 기준으로 상대 평가한 결과, SV-260 대비 V-1 및 V-1R의 최대모멘트는 1.22배, 1.36배 증가하였으며, 최대변위비는 2.41배, 2.92배 증가하였다. 또한 에너지 소산능력도 각각 1.39배, 1.52배 증가하였다. 따라서 강재 댐퍼에 횡변형 방지 상세를 적용한 것은 적절한 것으로 평가되었다.

Keywords

Acknowledgement

본연구는 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2017 R1D1A1B04029593)에 의해수행되었습니다.

References

  1. Hashemi, A., Zarnani, P, Masoudnia. and Quenneville, P. (2017), Seismic Resilient Lateral Load Resisting System for Timber Structures, Construction and Building Materials, 149, 432-443. https://doi.org/10.1016/j.conbuildmat.2017.05.112
  2. Lee, H. H. (2018), Literature Review of Precast Concrete Rocking Wall, Proceeding of the Korea Institute for Structural Maintenance and Inspection, 22(1), 271-272.
  3. Lee, H. H. (2019), Rocking Behavior of Steel Dampers according to Strut Shapes and Heights of Steel dampers, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(4), 45-52.
  4. Lee, H. H (2020), Rocking Behavior of Steel Damper Shape, Journal of the Korean Association for Spatial Structures, 13(4), 41-47. https://doi.org/10.9712/KASS.2013.13.4.041
  5. Marriott, D., Pampanin, S., Bull, D., et al. (2008), Dynamic Testing of Precast, Post-Tensioned Rocking Wall Systems with Alternative Dissipating Solutions, Bulletin of the New Zealand Society of Earthquake Engineering, 41(2), 90-103. https://doi.org/10.5459/bnzsee.41.2.90-103
  6. Oh, S. H. and Chang, I. H. (2000), An Eexperimental Study on Hysterestic Characterestic of Braced Frames with Slit Plate Damper, Proceeding of the Architectural Institude of Korea, 20(2), 349-352.