• Title/Summary/Keyword: dredged marine clay

Search Result 43, Processing Time 0.025 seconds

Engineering Characteristics of Dredged Clay (준설점성토의 공학적 특성)

  • 김승렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.23-35
    • /
    • 1999
  • Although the purpose of dredging in the past was merely as a means of lowering the water level, presently land reclamation from dredged fill is of greater interest. From an economical standpoint, due to the difficulties in acquiring landfill for coastal projects, there is a growing trend toward simply using easily obtainable marine clay for use as fill. But because the ground formed by dredged fill has but low strength and is accompanied by large settlements, it is important that the engineering characteristics be fully investigated. In order to use dredged Masan marine clays as fill material, the engineering characteristics have been studied in this paper.

  • PDF

Long-term consolidation characteristics of dredged and reclaimed ground (준설매립지반의 장기압밀 특성)

  • Lee, Choong-Ho;Kim, Ju-Hyun;Baek, Won-Jin;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.486-493
    • /
    • 2008
  • Consolidation settlements on marine dredged clays are often greatly and potentially damaging to structures. Currently, large-scale projects are in planning or progressing in Korea. These projects has been performed on thick and soft clay layers. So, the evaluation of long-term consolidation settlement is very important in design and construction. Therefore, In this study, a long-term consolidation characteristics of marine dredged clays are investigated. First, the relationship of $C_{\alpha}/C_c$ on marine dredged clays near Gwang-yang Port was evaluated. Second, long-term consolidation characteristics of the pseudo-preconsolidated ground were evaluated.

  • PDF

Effect of electrochemical treatment on consolidation of soft clay

  • Li, Xiaobing;Yuan, Guohui;Fu, Hongtao;Wang, Jun;Cai, Yuanqiang
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.957-964
    • /
    • 2018
  • In this study, a method of electrochemical consolidation is applied. This method utilizes electro-osmosis, which is an effective ground improvement technique for soft clays, and soil treatment using lime, which is the oldest traditional soil stabilizer. The mechanism of lime treatment for soil involves cation exchange, which leads to the flocculation and agglomeration. Five representative laboratory tests-an electro-osmotic test and four electrochemical tests with various proportions of lime-were performed on dredged marine clay. The objectives of this study are to investigate the effect of electrochemical treatment and to determine the optimum dose for optimal consolidation performance of dredged marine clay. The results show that a better consolidation effect was achieved in terms of current, temperature, and vane shear strength by using electrochemical treatment. The best results were observed for the electrochemical test using 4% lime content.

SAND MIXING EFFECT FOR THE SUPPORT CAPACITY OF DREDGED SLURRIES (준설점토의 지지력에 대한 모래 혼합효과)

  • 유건선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.47-54
    • /
    • 1992
  • When marine clay is hydraulically dredged from seabed and pumped into the pond enclosed by contatinment dykes, marine clay is mixed and flocculated with water and then settled. At this time, the fines will interact with the water to form a Bingham plastic slurry which has non-Newtonian characteristics. The dredged slurry has different physical properties depending on settling locations and settling depths in the pond and has few hundred percent of water content and almost nil of shear strenght. In order to make this condition of the dredged slurry the final formation for public use within a short period, sand spreading method to enhance the support capacity of the dredged slurry is developed. In this paper, the effect of sand mixing into the dredged slurry of this method is analyzed based on reference study, laboratory tests and actual construction results.

  • PDF

Sedimentation & Consolidation Behaviour of Dredged Clay Fill (준설매립 점토지반의 침강 . 압밀거동)

  • 이승원;지성현;유석준;이영남
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.149-156
    • /
    • 2000
  • Sedimentation and self-weight consolidation tests in cylinder and large model tank and field measurement such as settlement and pore water pressure at each layer by wireless automatic instrumentation system were carried out to investigate the behaviour of dredged marine clay fill. The consolidation behaviour for each reclaimed layer was analyzed from these measured data and numerical analysis result using finite strain consolidation theory. It was fond from this study that the consolidation behaviour of dredged clay fill is heavily dependent on the filling process.

  • PDF

Quick Surface Strengthening of Soft Dredged Clay Fill by Dividing the Layer into Self Consolidation and Desiccation (점성토 준설매립지반의 자중압밀과 대기건조 영역분리에 의한 표층고결 촉진공법)

  • Kim, Hyun-Tae;Kim, Seung-Wook;Kim, Sang-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.499-506
    • /
    • 2004
  • The use of dredged soft marine clay is increasing due to a shortage of coarse material available. This paper presents a stabilization method that can increase shear strength of the surface layer of a dredged clay deposit at dates much earlier than usual. The desiccation of the upper soft 1-2m layer can be accelerated by interrupting water seeping from its bottom with impervious geotextile. Just below the geotextile, enough pervious material is provided so that the underlying deposit can be drained through it. This scheme is proved to be effective through theoretical analysis.

  • PDF

Reinforcing Effect of Dredged Marine Clay Mixed with Micro-Fiber (Micro-Fiber 흔라네 의한 준설해성점토의 보강효과)

  • 박영목;우문정;허상목;정연인
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.75-81
    • /
    • 2003
  • To investigate the reinforcing effect of subsurface layers of marine dredged clay(DMC) mixed with the micro-fiber(MF), a series of laboratory tests were performed on the DMC specimens with and without MF through uniaxial and triaxial compression tests. For the test programme, the elapsed time after dredging of marine clay, mixing rate and length of MF, and curing time of the composite were chosen as the important factors affecting the strength behaviour. The strength of the DMC mixed with MF and waste lime(WL) used for the admixture was found to be enhanced with the increasing content and length of MF, and with decreasing water content of DMC. MF and WL were applied as materials for trafficability improvement of the very soft reclaimed ground by DMC.

Experimental study on characteristics of sedimentation and consolidation for dredged clay in the west coastal of Korea (국내 서해안 준설토의 침강압밀특성에 관한 실험 연구)

  • Jun, Sang-Hyun;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1190-1197
    • /
    • 2009
  • Design parameters related to Yano's method(1984, 1985), one of experimental approaches having been used widely in Korea to estimate sedimentation and consolidation of dredged and reclaimed ground, were analyzed and their propriety were reassessed in this paper. Data analyses were performed on the basis of the settling test results using samples from the west coastal area of Korea. From analysis of results, for specific characteristics of these dredged and reclaimed marine soft clays, co-relations of initial water content - coefficient of sedimentation/ consolidation - initial setting velocity were evaluated. Relation between height of soil solid and surface height of slurry at the stages of initiation and termination of consolidation was also assessed. Finally ranges and average values of these design parameters were evaluated and typical empirical equations between these design parameters were also proposed.

  • PDF

Correlation Analysis between Physical Properties and Compression Index for Dredged and Reclaimed Marine Clay in the Southern Coast of Korea (남해안 매립 해성점토의 물리적 특성과 압축지수의 상관성 분석)

  • Lim, Seok-Hun;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.53-59
    • /
    • 2014
  • The single regression method was used to analyze the correlationship between the compression index with mechanical properties for reclaimed marine clays in the southern coast of Korea. As results of performing regression analysis for 200 samples about reclaimed marine clays in the southern coast of Korea, linear regression lines between compression index and natural water content, void ratio in situ, and liquid limit respectively wer obtained. The changed properties of soil due to disturbance during dredging and reclaiming could be investigated by comparing with the existing empirical correlation equations for the original ground where dredging was performed. These regression equations might be rationally used in the preliminary evaluation of settlement of dredged and reclaimed marine clayey ground in the southern coast of Korea.

  • PDF

Strength Characteristics of Light-Weight Cement mind Marine Clay with Foam (경량기포혼합 준설토의 강도특성)

  • 박건태;김주철;윤길림;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.483-490
    • /
    • 2002
  • A massive amount of marine clay produced as dredging of coast and sea bed is often dumped in open sea and filled in pond. The treatment of marine clay demand a large area and make fatal environmental problems for echo system. This research work intend to manufacture a light-weight landfill materials which are produced by mixing the dredged marine clay with various amount cement and foam. An extensive Uniaxial and Triaxial compression test are carried out to investigate the strength characteristics of the light-weight cement mixed marine clay with foam under various test conditions. The results indicated that the required unit weight has been achieved with negligible change after 28days curing time in water. It is also recognized that the compressive strength of light-weight landfill materials linearly decrease with increasing initial water content, and the rate of strength decrease with increasing initial water content in water curing was smaller than that of air curing Futhermore, the rate of strength decreased with increasing initial water content, however, the rate become smaller as cement content increased.

  • PDF