• Title/Summary/Keyword: drainage water volume

Search Result 88, Processing Time 0.024 seconds

Effects of Ponding Depth Treatment on Water Balance in Paddy Fields (담수심 처리가 논의 물수지에 미치는 영향)

  • 손성호;정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • The purpose of this study was to investigate the effects of ponding depth treatment on water balance in paddy fields. Three ponding depth treatments, very shallow, shallow, and deep were used. The experimental plots were three 80m $\times$ 8m rectangular plots. Daily values of rainfall amount, ponding depth, irrigation water, drainage water, evapotranspiration, and infiltration were measured in the field. The ponding depth was continuously observed by water level logger during the growing season. The ET was measured by 1-m diameter PVC lysimeters. Irrigation water volume was measured by 75 mm pipe flowmeters and the drainage water volume by 75 mm pipe flowmeters and a recording Parshall flume. The results showed that irrigation water depths were 688.9 mm, 513.6 mm, and 624.4 mm in very shallow, shallow, and deep ponding, respectively. The effective rainfall amounts (effective ratio) were 243.7 mm(48.8%), 344.6 mm(68.9%), and 272.9 mm(54.6%) in very shallow, shallow, and deep ponding, respectively. The three treatments did not show any statistical difference in growth and yields. But the shallow depth treatment showed the largest yield.

Loading Rates and Characteristics of Litter from Highway Stormwater Runoff (강우로 인해 고속도로로부터 유출되는 폐기물의 성상, 부하량 및 유출 특성)

  • Kim, Lee-Hyung;Kang, Joohyon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.415-421
    • /
    • 2004
  • Litter wastes on highway runoff are gradually being considered one of the major pollutants of concern in protecting the integrity of receiving waters for beneficial use. The California State Water Resources Control Board has identified in their 303(d) list at least 36 water bodies where trash or litter is considered a pollutant of concern. The first TMDL adopted by the Region 4 (Los Angeles area) of the California State Water Quality Control Board was for trash in the Los Angeles River. The first flush characteristic study was developed to obtain first flush water quality and litter data from representative stormwater runoff from standard highway drainage outfalls in the Los Angeles area. Total captured gross pollutants in stormwater runoff were monitored at six Southern California highway sites over two years. The gross pollutants were 90% vegetation and 10% litter. Approximately 50% of the litter was composed of biodegradable materials. The event mean concentrations show an increasing trend with antecedent dry days and a decreasing trend with total runoff volume or total rainfall. Event mean concentrations were ranged 0.0021 to 0.259g/L for wet gross pollutants and 0.0001 to 0.027g/L for wet litters. The first flush phenomenon was evaluated and the impacts of various parameters such as rainfall intensity, drainage area, peak flow rate, and antecedent dry period on litter volume and loading rates were evaluated. First flush phenomenon was generally observed for litter concentrations, but was not apparent with litter mass loading rates. Litter volume and loading rates appear to be directly related to peak storm intensity, antecedent dry days and total flow volume.

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Effects of ponding depth treatment on evapotranspiration in paddy fields (담수심 처리가 논의 증발산량에 미치는 영향)

  • Sohn, Seung-Ho;Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.9-12
    • /
    • 2002
  • The purpose of this study was to investigate the effects of ponding depth treatment on evapotranspiration in paddy fields. Three poding depth treatments, very sallow, shallow, and deep were used. The experimental plots were three $80m{\times}8m$ rectangular plots. Daily values of rainfall amount, ponding depth, irrigation water, drainage water, evapotranspiration, and infiltration were measured in the field. The ponding depth was continuously observed by observed nstaff during the growing season. The ET was measured by 1m diameter PVC lysimeters. Irrigation water volume was measured by 75 mm pipe flow-meters and the drainage water volume by 75 mm pipe flow-meters and a recording parshall flume. The results showed that irrigation water depths were 688.9 mm, 513.6 mm, and 624.4 mm in 2001, and 356.9 mm, 428.6 mm, and 513.2 mm in 2002 in very shallow, shallow, and deep ponding, respectively. The evapotranspiration were 465.0 mm, 484.1 mm, and 415.1 mm in 2001 and 461.3 mm, 476.3 mm, and 470.6 mm in 2002 in very shallow, shallow, and deep ponding, respectively.

  • PDF

Triaxial Compressive Behaviour of Unsaturated Silt under Different Drainage Conditions (다양한 경계조건에서의 불포화 실트의 삼축압축 거동)

  • Kim, Young-Seok;Oka, Fusao
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.998-1003
    • /
    • 2008
  • It has been recognized unsaturated soil behaviour playing an important role in geomechanics. Up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter (i.e. non-contactable transducer) during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. Various triaxial compression tests for unsaturated soil under different drainage conditions are carried out. The behaviour of the pore pressure, namely, the pore-air pressure and the pore-water pressure, and matric suction during the shearing tests are investigated. The experimental results have revealed that the mechanical behaviour of unsaturated soil can be significantly affected by the matric suction.

  • PDF

The Effect of Connected Bioretention on Reduction of Surface Runoff in LID Design (LID 설계시 식생체류지간 연결에 의한 강우유출수 저감 효과분석)

  • Jeon, Ji-Hong;Seo, Seong-Cheol;Park, Chan-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.562-569
    • /
    • 2016
  • Recently, Low Impact Development (LID) is being used in Korea to control urban runoff and nonpoint source pollution. In this study, we evaluated the reduction of surface runoff from a study area, as the effect of connecting three bioretention as LID-BMP. Surface runoff and storage volume of bioretention is estimated by the Curve Number (CN) method. In this study, the storage volume of bioretention is divided by the volume of surface runoff and precipitation which directly enters the bioretention. The ratio of captured surface runoff volume to storage volume is highly influenced by the ratio of drainage area to surface area of bioretention. The high bioretention surface area-to-drainage area ratio captures more surface runoff. The ratio of 1.2 captures 51~54% of the total surface runoff, ranging from 5-30cm of bioretention depth; a ratio of 6.2 captures 81~85%. Three connected bioretentions could therefore captures much more runoff volume, ranging from $35.8{\sim}167.3m^3$, as compared to three disconnected bioretentions at their maximum amount of precipitation with non-effluent from the connecting three bioretentions. Hence, connecting LID-BMPs could improve the removal efficiencies of surface runoff volume and nonpoint source pollution.

Behavior of Geosynthetic Reinforced Wall with Heat Induce Drainage Method During Rainfall (열유도 토목섬유 배수공법이 적용된 보강토 옹벽의 강우시 거동 특성)

  • Shin, Seung-min;Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper presents the results of a scale model test to the effect of heat exchanger drainage method in retaining wall of weathered granite soil. Purpose to rise in the temperature of the heat wires inside the weathered granite soil is preventing the collapse of the retaining wall and drainage smoothly moved to the drainage layer. Especially using a spray gun to simulate the rainfall since the rainfall drainage work is important for the rainfall effect on soil, find the difference about displacement of the retaining wall, change of volume water content, drainage, earth pressure and change in the strain of the geosynthetic was effected to heat exchanger within the soil. The result from applying the heat exchanger method decreased the earth pressure and displacement of the wall and increased drainage of water.

Hydraulic Analysis of Tailing Dam using GIS (GIS 기법을 이용한 광미댐 수문 분석)

  • Song, Won-Jyong;Heo, Sung;Kim, Tae-Heok
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.375-385
    • /
    • 2008
  • Hydraulic analysis in a dam that has a single outlet of water can be made through a simple comparison between the total precipitation and the volume of discharged water. In case of tailing dams this estimation could yield an error because several drainage facilities are worked independently as well as simultaneously. In this research, a capability of the drainage system in the tailing dam of the old Sangdong Mine was analysed by the means of GIS technic. As a result of this study, it was expected that in the normal working condition of the whole drainage system, the flooding of water over the dam should not occur in spite of the consecutive precipitation during one hour with an intensity of 80.31 mm/hr, a probable precipitation within 100 years. It was, however, revealed that, if the drainage system did not work completely, the water could flood over the dam when the total precipitation reached 251.1 mm.

Improvement of Efficiency in Surface Washing of Granular Filters (여과지 표면역세척 공정의 효율개선)

  • Ahn, Jong-Ho;Kim, Ja-Kyum;Yoon, Jae-Heung;Shin, Ik-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.41-46
    • /
    • 1999
  • Backwashing is an important process for the efficient operation of granular filters, and the efficiency of the surface washing among the backwashing processes can affect the filtrations rate and filter run-time. In this study, the efficiency of surface washing is evaluated using real filters for three cases: with surface washing (with and without drainage of water to the surface of filter bed) and without surface washing. As a result, in the case of adopting both the drainage and surface washing, the filter of which condition is initially worse than those of the other filters shows improvement in head-loss development, filtration velocity, filter run-time, and total filtration volume. On the other hand, the conventional method of surface washing rarely has an effect on the filter washing.

  • PDF

Evaluation on Drainage Capacity of Cylindrical Drain with Different Core Shapes (코아형식에 따른 원통형 배수재의 구멍막힘에 의한 배수능력 평가비교)

  • Lee Kwang-Yeol;Nugroho David Setiawan;Yun Sung-Tae;Ji Ho-Yeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.311-315
    • /
    • 2006
  • Various core shapes of cylindrical drains are used for accelerating primary consolidation for soft clay deposits, but serious harmful disadvantages on drainage capacity may occur on cylindrical drains due to confining Pressure when they are installed in that soil. In this study, two different core shapes of cylindrical drain are used to evaluate the drainage capacity with consideration of clogging effects on their filter jackets for an applied confining pressure. Column tests with radial drainage system were conducted under confining pressure of 50 kPa for 13 days. Two parameters which are discharge and accumulated volume of water drained were measured as the time elapsing. From this experimental study, the results showed that at the Initial stage before the clogging developed enough, the cylindrical drain with angular-type-plastic-core could produce discharge twice higher (maximum) than those with round-type. After 13 days had passed on, cylindrical drain with angular-type-plastic-core could produce discharge only 20% higher than those with round-type one. Eventually, there is a possibility that the efficiency of using angular-type-cylindrical-drain will be similar to the round-type one as the clogging develops more.

  • PDF