• Title/Summary/Keyword: drainage pipe

Search Result 169, Processing Time 0.023 seconds

Analysis of runoff speed depending on the structure of stormwater pipe networks (우수관망 구조에 따른 유출 속도 분석)

  • Lee, Jinwoo;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • Rainfall falling in the impervious area of the cities flows over the surface and into the stormwater pipe networks to be discharged from the catchment. Therefore, it is very important to determine the size of stormwater pipes based on the peak discharge to mitigate urban flood. Climate change causes the severe rainfall in the small area, then the peak rainfall can not be discharged due to the capacity of the stormwater pipes and causes the urban flood for the short time periods. To mitigate these type of flood, the large stormwater pipes have to be constructed. However, the economic factor is also very important to design the stormwater pipe networks. In this study, 4 urban catchments were selected from the frequently flooded cities. Rainfall data from Seoul and Busan weather stations were applied to calculate runoff from the catchments using SWMM model. The characteristics of the peak runoff were analyzed using linear regression model and the 95% confidence interval and the coefficient of variation was calculated. The drainage density was calculated and the runoff characteristics were analyzed. As a result, the drainage density were depended on the structure of stormwater pipe network whether the structures are dendritic or looped. As the drainage density become higher, the runoff could be predicted more accurately. it is because the possibility of flooding caused by the capacity of stormwater pipes is decreased when the drainage density is high. It would be very efficient if the structure of stormwater pipe network is considered when the network is designed.

A study on efficient management of the drainages of underground tunnels for environmentally friendly urban railway systems (도시철도 친환경 지하터널 배수형식의 효율적인 유지관리 방안 검토)

  • Baek, Jong-Myeong;Hong, Jong-Hun;Kim, Han-Bae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1982-1990
    • /
    • 2010
  • Excepting tunnel of dorimstream - ccachimountain station section, the subway line No.2th section was build using ASSM and NATM methods because of soil pressure and land condition. The way of dealing underground water was selected without sufficient preconsideration of geographical features, ground condition, influence of lowing underground water, and long-term cost of running maintenance so that the form of undrained tunnel was build having decreased construction characteristics and technically improper elements. The form of partial drainage is very difficult to manage structures of tunnel, because water leakage, water pressure causing cracks of lining concretes and scaling are constantly happened. so partial drainage suggest that setting reinforced Anchor Bolt to prevent buoyancy and should increase center drainage way up to height of railroad. Partial drainage suggest that holey pipe(${\phi}$350mm) manhole, drainage checking pipe manhole are should be regularly dredged, when changing roadbed(gravel${\rightarrow}$concrete) drainage checking pipe manhole should be build and setting a limitation of entering underground water's quantities. Beside drainage degree in changed section of structures causing instability of structures is continuous degree. so if efficient drainage way and the patterns of flaws, problems are considered in survey, it will be expected to have a advantage condition in maintenance part.

  • PDF

Study on performance verification of dual-purpose rockbolt for reinforcement and drainage (지반 보강과 배수를 위한 이중기능 록볼트 성능 검증에 관한 연구)

  • Jung, Young-Hoon;Kim, Doo-Rae;Kim, Kyeong-Cheol;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.869-886
    • /
    • 2018
  • Rockbolt is one of the most common supports used to reinforce discontinuous rock during underground excavation. Extra drain pipes are installed to improve excavation workability and the anchorage of rockbolts in water bearing ground. The drain pipe is effective in improving the workability by providing drainage path, but it is difficult to expect the reinforcement effect, increasing disturbance of the discontinuous rock mass and the construction cost. To solve this problem, dual purpose rockbolt (DPR) has been developed for the reinforcement of rock and the drainage of ground water. DPR was able to improve the mechanical and hydraulic stability of the rocks quickly and economically. Two kinds of DPRs using FRP (Fiber Reinforced Plastic) and steel were investigated for the mechanical and hydraulic performance. Also, the workability and stability of DPR were analyzed.

Variation of Soil Physical Characteristics by Drainage Improvement in Poorly Drained Sloping Paddy Field (배수불량 경사지 논 토양의 배수방법에 따른 토양 물리성 변화)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.704-710
    • /
    • 2012
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. This study was conducted to evaluate soil physical characteristics by drainage improvement in poorly drained sloping paddy field. The results showed that subsurface drainage by Pipe Drainage improves the productivity of poorly drained soils by lowering the water table and improving root zone soil layer condition. In an Pipe drainage plot, soil moisture drained faster as compared to the other drainage methods. Infiltration rate showed high tendency to Piper Drainage method about $20.87mm\;hr^{-1}$ than in Open Ditch method $0.15mm\;hr^{-1}$. And Similarly soil water and degree of hardness and shear strength phase of soil profile showed a tendency to decrease. From the above results, we found that when an subsurface drainage was established with at 1m position from the lower edge paddy levee of the upper field in sloping poorly drained paddy fields Pipe Drainage was the most effective drainage system for multiple land use.

Study on the unsteady characteristics of depressurized drainage system (부압을 이용한 배수시스템의 비정상상태 유동특성해석)

  • Lee, Kil-Seok;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2682-2687
    • /
    • 2008
  • Depressurized drainage systems have been used for more than 30 years and are becoming a common part of urban drainage infrastructures. The hydraulic principles governing the operation of the depressurized drainage systems were studied in this paper and particularly, focused on the analysis of unsteady characteristics of the two-phase flow. A definition of the filling ratio was outlined and types of flow pattern were classified according to the filling ratio. Experiments were conducted to investigate the main features of pressure fluctuation. All results were found to depend on the filling ratio of the upstream pipe flow as well as the upstream Froude number.

  • PDF

Water saving irrigation method in paddy fields (용수절약형 논관개 기법(관개배수 \circled1))

  • 정상옥;안태홍
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.108-113
    • /
    • 2000
  • A field study was performed to investigate the effect of water saving irrigation method on water use efficiency and rice yield. The field plot was 40a (40 ${\times}$ 100m) in size and located at Buryangmyun, Kimjae city, Chonbuk province. Field measurements were made during the growing seasons, May to September of the year 1998 and 1990. Irrigation water volume, drainage water volume, rainfall and ponding depth were measured. Irrigation water management practice employed was such that to keep the ponding depth about 3 to 4cm by intermittent irrigation with drying the soil surface until hair cracks emerge before the next irrigation. The amounts of water volume irrigated and drained were measured by pipe flow meter and ponding depth was observed by using a partly buried 120mm diameter PVC pipe. The results showed that the irrigation water depths, the rainfalls, and the drainage depths were 379mm, 458mm, and 448mm in 1988, and 274mm, 819mm, and 736mm in 1990, respectively. The average yield was 590kg per 10a. The water saving irrigation method saved irrigation water by about 20% with higher yield compared with the traditional method.

  • PDF

Studies on Wet Paddy Field Underdrainage Improvement in the Gum-Ho Area (I) (금호지구 저습답의 암거배수효과에 관한 연구(I))

  • 김조웅;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.82-95
    • /
    • 1980
  • This paper complies the results of the studies so far made on the subsoil improvement of subsurface drainage systems for wet paddy fields (those were located in the Gum-Ho area in Kyung Buk province) which had poor permeability and a high water table. In general, a drainage problem is an excess of water on the ground surface which can effect the productivity and bearing capacity of the soil. With drain pipe systems, (According to their depths and spacing) it may be possible to correct that problem. The experimentation consisted of three test plots, two of which included drain pipe systems with varing depths and width spacing of the pipes. The third plot (C) was an ordinary plot being exempt of a drain pipe system. In detail, the depth of plot A was 80 cm, and the width spacings began at 2. Om and increased by 2. Om up to 10. 0m. The depth of plot B was 60cm and the width spacing was the same as plot A. These tests were performed to research specific details; such as crop yeild, bearing capacity of the soil, the amount of underdrainage, surface cracks, root distribution, the water table level, the consumptive water depth and the soil moisture content. The test period lasted three years, from 1977 thru 1979. The results obtained were as follows: 1. During the test period, the weather conditions for the area tested were in accordance with the annual average for that area. Furthermore the precipitation factor during the spring cultivation season, the intermediate drainage period and the harvest drainage period was of optimum conditions for controling surface cracks, because of less precipitation than evaporation. 2. The difference in the level of the ground water table in plots A and B was hardly noticable, but the difference in the test plots and the ord. plot was greatly noticable. The test plots (A, B) were 30 to 40cm lower than the ordinary plot. On the whole, the ground water table of the ord. plot always stayed at a level of 15-20cm beneath the surface of the soil, the ground water table of the test plot A showed The difference in the depth of the pipe lower than the test plot B, while the test plots showed a remarkable descending effect. 3. The soil temperature in plot A was slightly core than in plot B with a difference of 0. 47$^{\circ}$C, but plot A was 1. 6$^{\circ}$C higher than the ord. plot during the flooding period, but after drainage the temperature difference climed to 2. 0$^{\circ}$C. 4. During the 3rd test year, the values of the cracks were recorded with the values of 59cm in plot A, 42cm in plot B and 15cm in the ordinary plot. Plots A and B had increased 2.5 times the value of the first year while the ordinary plot had remained the same. 5. The root weight of the rice was measured at a value of 77.2 gr. for plot A, 73.5 gr. for plot B and 65.3 gr. for the ord. plot. Therefore, the root growths in plots A and B were much more energetic than in the ord. plot. 6. The consumptive water depth measured during the 3rd year resulted in the values of 26. 0mm per day for plot A, and 24.9 mm per day for plot B, respectively. Therefore, both plot A and plot B maintained the optimum consumptive water depths, but the ordinary plot only obtained the value of 12.3 mm per day, which clearly showed less than the optimum consumptive water depth which is 20 to 30 mm/day. 7. The soil moisture content is in direct relationship to the ground water level. During drainage, test plot A decreased in its ground water level much more rapidly than the other two plots. Therefore, plot A had a much less soil moisture content. But this decreased water level could be directly effected by the weather conditions. 8. The relationship between the bearing capacity and the soil moisture content were directly inversely proportional. It can be assumed that the occurence of soil creaks is limited by the soil moisture content. Therefore, the greater the progress of the surface creaks resulted in a greater bearing capacity. So, tast plot A with a greater amount of surface cracks than the other test plots resulted in a greater bearing capacity. But, the bearing capacity at the harvest season could be effected by the drainage during the intermediate drainage period and by the weather conditions. 9. Comparing the production of the test plots to the ord. plot; there was an increased value of 840kg for plot A, 755kg for plot B and 695kg for the ord. plot in the rough rice. Therefore, plot A had an increase of 20% over the ordinary plot. The possibility of producing double crops was investigated. The effects on barley production in the test plots showed a value of 367kg per 10 acres, which substantiated the possibility of double crops because that value showed an increased value over the average yearly yield for those uplands. 10. So as a result, it can be recommended that by including a drain pipe system with the optimum conditions of an (80cm centimeter) depth and a (l0m) spacing will have a definite positive effect on the over all production capacity and quality of wetpaddy fields.

  • PDF