• Title/Summary/Keyword: drainage layer

Search Result 193, Processing Time 0.026 seconds

Comparison of real-time ultrasound imaging for manual lymphatic drainage on breast cancer-related lymphedema in individuals with breast cancer: a preliminary study

  • Seo, Dongkwon;Lee, Seungwon;Choi, Wonjae
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Objective: Breast cancer-related lymphedema (BCRL) is a major sequela after surgery or radiotherarpy for breast cancer. Manual lymphatic drainage (MLD) is designed to reduce lymph swelling by facilitating lymphatic drainage. This study attempted to determine the histologic changes in the skin and subcutaneous layer, and the immediate effect of MLD in decreasing lymphedema using ultrasound imaging, which is the method used most commonly to eliminate BCRL. Design: A single-group experimental study. Methods: Five subjects who were diagnosed with hemiparetic upper extremity lymphedema more than six months after breast cancer surgery participated in the study. MLD was performed for 60 minutes in the order of the thorax, breast, axilla, and upper arm of the affected side. In order to determine the effect of MLD, ultrasound imaging and limb volume were assessed. Two measurement tools were used for asessing lymphedema thickness among the pretest, posttest, and 30-minute follow-up period. Results: Significant diferences in ultrasound imaging and upper limb volume were found between the affected side and non-affected side (p<0.05). On the affected side, although ultrasound imaging showed a significant decrease after MLD (p<0.05), there were no significant difference in upper limb volume when compared to the baseline. Conclusions: In this study, a significant decrease in lymphedema by MLD was demonstrated by ultrasound imaging, which is considered to be more useful in assessing histological changes than limb volume measurements. Further research on the protocol for eliminating lymphedema will be needed.

Variation of Soil Physical Characteristics by Drainage Improvement in Poorly Drained Sloping Paddy Field (배수불량 경사지 논 토양의 배수방법에 따른 토양 물리성 변화)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.704-710
    • /
    • 2012
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. This study was conducted to evaluate soil physical characteristics by drainage improvement in poorly drained sloping paddy field. The results showed that subsurface drainage by Pipe Drainage improves the productivity of poorly drained soils by lowering the water table and improving root zone soil layer condition. In an Pipe drainage plot, soil moisture drained faster as compared to the other drainage methods. Infiltration rate showed high tendency to Piper Drainage method about $20.87mm\;hr^{-1}$ than in Open Ditch method $0.15mm\;hr^{-1}$. And Similarly soil water and degree of hardness and shear strength phase of soil profile showed a tendency to decrease. From the above results, we found that when an subsurface drainage was established with at 1m position from the lower edge paddy levee of the upper field in sloping poorly drained paddy fields Pipe Drainage was the most effective drainage system for multiple land use.

Analysis of Urban Inundation Considering Building Footprints Based on Dual-Drainage Scheme (건물의 영향을 고려한 이중배수체계기반 침수해석)

  • Lee, Jeong-Young;Jin, Gi-Ho;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.40-51
    • /
    • 2014
  • This study aims to investigate urban inundation considering building footprints based on dual-drainage scheme. For this purpose, LiDAR data is cultivated to generate two original data set in terms of DEM with $1{\times}1$ meter and building layer of the study drainage area in Seoul and then the building layer is overlapped as vector polygon with the mesh data with the same size as DEM. Then, terrain data for modeling were re-sampled to reduce resolution as $10{\times}10$ meters. As results, the simulated depth without considering building footprints has a tendency to underestimate the inundation depth compared to observed data analized by CCTV imagery. Otherwise, the simulation result considering building footprints revealed definitely higher fitness. The difference of inundation depth came from the variation of inundation volume which was relevant to inundation extent. If the building footprints are enlarged, the possible inundation depth is increased, which results in being inundation depth higher because hydrological conditions such as rainfall depth are conservational. Otherwise, according to comparison of inundation extents, there were no significant difference but the case of considering building footprint was revealed slightly higher fitness. Thus, it is concluded that the considering building footprint for inundation analysis of urban watershed should be required to improve simulation accuracy synthetically.

Improvement of Thickness in White Duplex Board by Utilization of Defibrated Fibers (1) - Utilization of Defibrated Fibers - (백판지의 두께 증대를 위한 목질섬유의 이용 (1) - 목질섬유의 이용 -)

  • Seo, Yung Bum;Kim, Hyun Jun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.34-40
    • /
    • 2014
  • Wood fibers for medium density fiberboard (MDF) was used in the filler layer of the white duplex board for increasing thickness and bulk of the board. The MDF fibers and the old corrugated container (OCC) furnish were refined, and mixed together to form paperboard. At optimum mixing ratios and refining degrees, stiffness and tensile strength of the MDF fiber-containing board were higher than those of the board with 100% OCC. It was found that there was possibility to reduced basis weight of the filler layer down to 90% of the all OCC furnish by judicious selection of the mixing ratio and the refining method of the MDF fibers. Drainage rate increase and potential drying energy savings were additional benefits.

A Study on Drainage Stability of Cable Tunnel (전력구 터널의 배수 안정성에 관한 연구)

  • 지현석;박준모;장연수;박정순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.687-694
    • /
    • 2002
  • This paper presents the results of 3-D analysis on steady state flow in the region where the leakage in a cable tunnel is occurred due to high excess ground water pressure. In numerical modeling, a relief well is selected as a method of reduction in water pressure at the surrounding region of the cable tunnel. The distribution of ground water level after dewatering by relief wells is analyzed, Results show that the amount of dewatering level in the layer of hard rock is about 4.2∼8.6m, and that in the layer of fracture zone is about 5.8∼8.2m. The predicted settlement at the cable tunnel due to the increase of effective stress by dewatering is 0.3mm.

  • PDF

Multi-temporal image derived Ratio Vegetation Index and NDVI in a landslide prone region

  • Paramarthalingam, Rajakumar;Shanmugam, Sanjeevi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.257-259
    • /
    • 2003
  • Landuse maps are prepared from satellite imagery and field observations were conducted at various locations in the study area. Compared to the field data and NDVI and RVI thematic maps, NDVI is better than RVI, because it compensates for changing illumination conditions, surface slope, aspect and other factors. Clouds, water and snow have negative values for RVI and NDVI. Rock and bare soils have similar reflectance in both NIR and visible band, so RVI and NDVI are near zero. In forest areas with good vegetation cover, NDVI is high and landslide occurrence is less. But if annual and biennial vegetations are present and if cultivation practices are changed frequently, NDVI is medium and landslide occurrence is moderate. In areas where deforestation and settlement is in progress, NDVI is less and landslide occurrence is more. The NDVI FCC thematic map may be used as an important layer in GIS application for landslide studies. Analyzing other layers such as slope, rainfall, soil, geology, drainage, lineament, etc with NDVI FCC layer will give a better idea about the identity of landslide prone areas.

  • PDF

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

The Effects of Soil Surface Moisture Distribution in Perlite on Occurrence of Wild Plants (지표면의 수분분포가 야생초본류의 발생에 미치는 영향)

  • Bak, In-Young;Kim, Min-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.16-23
    • /
    • 2001
  • This study was conducted to analyse the relation between physical characteristics of soil surface and wild plants occurrence. Lots of natural occurrence on loamy soil and a little of natural occurrence on perlite. Those were used to observe the wild plants occurrence through the duration. Natural occurrence of wild plants were observed on uniform sand, perlite, loamy soil and 2cms loamy soil layer above the perlite. Uniform sand was compared with different height of drain ditch. The results of analysis were as followed. 1. Wild plants germinated on the uniform perlite layer, they did not grow larger. Because water in large pores of perlite surface drained rapidly and evaporated easily, therefore surface remained low moisture contents. 2. A lot of weed grew on 2cms loamy layer on perlite which stratified above the perlite layer. Because perlite had plenty of soil moisture and soil moisture moved easily from perlite to loamy soil layer. 3. Uniform loamy soil had similar occurrence on the uniform perlite. It was nearly same at surface moisture distribution but lower than layered loamy soil on perlite, and the vertical distributions at soil moisture was totally lower than 2cms loamy soil layer on perlite. 4. Wild plants were grew on uniform sand on different height of drain ditch. In this case, much more wild plants were grew on which had more higher drainage ditch. The number of wild plants occurred when it was affected by soil surface moisture, drain ditch and natural occurrence of wild plants. This could be controlled by layered soil at surface moisture. Therefore weed occurrence can control in planting ground, where soil layer would not be disturbed.

  • PDF

Growth Characteristics of Kentucky Bluegrass on Different Rootzone Foundations (지반 유형에 따른 켄터키 블루그래스의 생육특성)

  • 이혜원;정대영;심상렬
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.6
    • /
    • pp.95-103
    • /
    • 2004
  • A turfgrass rootzone foundation is one of the important iufluences on the growth of cool-season turfgrass such as Kentucky bluegrass, which is usually grown on korean golf courses and athletic fields in Korea. This study was carried out to evaluate the growth of Kentucky bluegrass on 4 types of turfgrass root-zone foundations: a 2cm thickness of Sand 90%+Peat humus 8%+Zeolite 2% mixture on a subsoil base (C), a 20cm thickness of Sand 90%+Peat humus 8%+Zeolite 2% mixture (S), a 20cm thickness of Sand 45%+fine sand(a sort of Bomyungsa) 45%+Peat humus 8%+Zeolite 2% mixture (S+F), and a 20cm thickness of Sand 45%+fine sand(a sort of Bomyungsa) 45%+Peat humus 8%+Zeolite 2% mixture on a 20cm thick drainage layer (S+F(G)). Visual ratings of Kentucky bluegrass on the C foundation were low throughout the experiment when compared to S, S+F, and S+F(G) foundations, which contained high contents of sand with a high water infiltration rate. However, poor growth of Kentucky bluegrass in the summer of 1991 on the S foundation was likely to be caused by a too high water infiltration rate (185.8cm/hr). The growth of Kentucky bluegrass on the S+F(G) was good while the growth was a little weak at the developing stage on the S +F foundation. If the cost had to be considered when constructing golf courses and athletic fields, The S+F foundation without the drainage layer would be the best choice in terms of low cost and good quality of Kentucky bluegrass compared to the S+F(G). In this result, the infiltration rate was regarded as the most influential factor to the growth of Kentucky bluegrass on rootzone foundations.

Analysis of Isochrone Effect of Clayey Soils using Numerical Analysis (수치해석을 이용한 점성토 지반의 아이소크론 영향 분석)

  • Lee, Yun-Sic;Lee, Jong-Ho;Lee, Kang-Il
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.84-97
    • /
    • 2019
  • Purpose: The consolidation settlement of soft ground is dependent on the distribution of pore water pressure which is also affected by hydraulic conductivities (boundary condition) of layers, thickness of clayey soil layer and surcharge. Results: However, the current consolidation analyses are mostly based on Terzaghi's consolidation theory that assumes the initial pore water pressure ratio with depth to be constant. In this study, numerical analysis are carried out to investigate the variation of pore water pressure dissipation with depth and thickness of clayey soil layer, time, surcharge as well as drainage conditions. Conclusion: Comparative study with Terzaghi's consolidation theory is also conducted. The result shows that Terzaghi's consolidation theory should be used with caution unless it is ideally corresponded to the isochrone.