• Title/Summary/Keyword: drainage channel network

Search Result 16, Processing Time 0.027 seconds

Evaluation of DEM-based Channel Network Delineation Methods on Watershed Drainage System (DEM을 이용한 수로망 산정 기법에 따른 유역의 배수구조 평가)

  • Lee, Gi Ha;Yoon, Eui Hyeok;Kim, Joo Cheol;Jung, Kwan Sue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.1-11
    • /
    • 2011
  • Channel network delineation from DEM (Digital Elevation Model) is a fundamental pre-process for hydrologic model application since it determines the drainage system in a watershed. This study aims to propose an effective and efficient channel network delineation process and assess the effects of DEM-based channel networks on the watershed drainage system. For these objectives, we applied two methods to generate the channel networks of the Jinan-cheon catchment with $18.28km^2$ from the 20 m resolution DEM: a widely-used area-threshold method and a slope-area threshold method based on the relationship between contributing areas and local slopes. The results showed that the area-threshold method led to unreliable drainage system, which did not satisfy geomorphological laws with respect to drainage density and source area representation whereas the slope-area threshold method provided acceptable results under the geomorphological laws. Our suggestions in this study can give valuable pre-processing information in DEM-based hydrologic modeling.

Modeling System for Unsteady Flow Simulations in Drainage Channel Networks of Paddy Field Districts (논 지구의 배수로 부정류 흐름 모의를 위한 모델링 시스템)

  • Kang, Min Goo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • A modeling system is constructed by integrating an one-dimensional unsteady flow simulation model and a hydrologic model to simulate flood flows in drainage channel networks of paddy field districts. The modeling system's applicability is validated by simulating flood discharges from a paddy field district, which consists of nine paddy fields and one drainage channel. The simulation results are in good agreement with the observed. Particularly, in the verification stage, the relative errors of peak flows and peak depths between the observed and simulated hydrographs range 8.96 to 10.26 % and -10.26 to 2.97 %, respectively. The modeling system's capability is compared with that of a water balance equation-based model; it is revealed that the modeling system's accuracy is superior to the other model. In addition, the simulations of flood discharges from large-sized paddy fields through drainage channels show that the flood discharge patterns are affected by drainage outlet management for paddy fields and physical characteristics of the drainage channels. Finally, it is concluded that to efficiently design drainage channel networks, it is necessary to analyze the results from simulating flood discharges of the drainage channel networks according to their physical characteristics and connectivities.

Analysis of Drainage Structure Based on the Geometric Characteristics of Drainage Density and Source-Basin (배수밀도와 수원유역의 기하학적 특성을 기반으로 한 배수구조에 대한 해석)

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.373-382
    • /
    • 2007
  • The exact resolution of channel initiation points is not so easy because of the dynamic behaviors of water movement on the hillslope. To this end, Kim, Joocheol and Kim, Jaehan(2007) have represented the channel network in real world basins for slope-area regimes using DEM. This study is its sequential content and then proposes the reliabilities of the hypothetical channel networks identified from DEM, which are assessed based on the geometric characteristics of drainage density and source-basin. The resulting drainage structures on the natural basin can be found to be depicted remarkably depending on the hypothetical channel network applied by slop-area threshold criterion. In addition, it is shown that there is a wonderful geometric similarity between the shapes of source- basin in a geomorphologically homogeneous region. Area threshold criterion could have restricted the shape of source-basin, so that it might bring about the incorrect drainage structures. But the hypothetical channel networks identified from DEM deserves special emphasis on expressing the space-filling structures nonetheless.

The Geometric Properties of the Drainage Structures based on Fractal Tree (Fractal 나무를 기반으로 한 배수구조의 기하학적 특성)

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.797-806
    • /
    • 2008
  • The geometric properties of the drainage structures are analyzed through depicting the drainage network which is composed of the whole drainage paths in the natural basin defined at the specific scale. The theoretical consideration is performed on the general structures of networks organized by ramification process based on Fractal tree and Horton's law. The drainage network is generated via ArcGIS, ordered by Strahler's ordering scheme and investigated with Strahler's order. As a results of the Richardson's method it is shown that there may exist the distinct behavioral characteristics between overland-flow and channel flow and the natural stream networks would be space-filling Fractals. As a result, it is shown that the values estimated by considering the overland-flow on being applied to the field data give the different results from the empirical method applied until now. As expected, therefore the results obtained from this study are sure to be devoted further researches on the channel networks.

Analysis of bifurcation characteristics for the Seolmacheon experimental catchment based on variable scale of source basin (수원 유역의 변동성 규모를 기반으로 한 설마천 시험유역의 분기 특성 해석)

  • Kim, Joo-Cheol;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.289-299
    • /
    • 2021
  • This study analyzes bifurcation characteristics of the Seolmacheon experimental catchment by extracting the shape variation of channel network due to variable scale of source basin or threshold area. As the area of source basin decreases, a bifurcation process of channel network occurs within the basin of interest, resulting in the elongation of channel network (increase of total channel length) as well as the expansion of channel network (increase of the source number). In the former case, the elongation of channel reaches overwhelms the generation of sources, whereas, in the latter case, the drainage path network tends to fulfill the inner space of the basin of interest reflecting the opposite trend. Therefore, scale invariance of natural channel network could be expressed to be a balanced geomorphologic feature between the elongation of channel network and the expansion of channel network due to decrease of source basin scale. The bifurcation structure of the Seolmacheon experimental catchment can be characterized by the coexistence of the elongation and scale invariance of channel network, and thus a further study is required to find out which factor is more crucial to rainfall transformation into runoff.

Deriving Channel Width-discharge Relationship from Remote Sensing Imagery and Digital Elevation Models (원격영상자료와 수치고도모형으로부터 하폭-유량 관계식 도출)

  • Kim, Jong Chun;Paik, Kyungrock
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.685-693
    • /
    • 2015
  • We propose a method for deriving the relationship between channel width and discharge from remote sensing products. Stream widths at points distributed along a river network can be measured from high-resolution remote imagery. Further, corresponding drainage area for these points can be calculated using digital elevation models, making it possible to construct width-drainage area relation. On the other hand, the relationship between the flow discharge and the drainage area is obtained from historical data measured at ground stations. By coupling these two relationships, we can finally derive the width-discharge relationship which comprises an important component of downstream hydraulic geometry. The proposed method was tested for the Nakdong River and the Seomjin River, successfully capturing power-law exponents in the width-discharge relationships reported in earlier studies. The proposed approach can serve as an alternative for obtaining the hydraulic geometry relationship under the limits of ground data.

The Physical Region of China Divided by the Characteristics of Drainage Patterns. (하계망패턴의 특색으로 구분한 중국의 자연지역)

  • Hwang, Sang-Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.151-164
    • /
    • 1996
  • The regional division by the characteristics of the drainage patterns is important to understand its physical environment comprehensively, because the drainage network develops in reflecting characteristics of geological, geographical and climatical features in the drainage basin keenly. This study is the attempt to divide physical region in China whose drainage pattern is diverse. Chinese drainage basin is mainly divided into the interior drainage basin and the peripheral drainage basin. The interior drainage basin is divided into (1)the deranged pattern and (2)the centripetal pattern. The peripheral drainage basin is divided into (1)the dendritic pattern, (2)the parallel pattern, (3)the radial pattern and (4)the anastomatic pattern. Drainage patterns of the interior drainage basin are formed by affecting geographical features and climatic conditions mainly. In the peripheral drainage basin, drainage patterns are formed by other factors: the parallel pattern is connected with geological structure lineament by tectonic movement, the radial pattern with changes of the river channel resulted from the Yellow River's overflow, the anastomotic pattern with human's activities. The distributional features of the physical region in China are as follows: The deranged pattern appears in Zangbai Plateau, the centripetal pattern does in arid basin of the northwest China. the parallel pattern does in Hengduan mountains affected strongly by tectonic movement between Yangtze paraplatform and Indian Plate, does in the upper stream of Yangtze River and Ganges River in the south of Qinghai-Xizang Plateau, the radial pattern in Huaihe Haihe River drainage basin appearing in the alluvial fan region of Yellow River's downstream and the anastomotic pattern does in the delta of Yangtze River, in the northern coastal plain of the Jiangsu-Province and in the delta of Zhujiang River. Except these areas in the peripheral drainage basin, the dendritic pattern is usually found in the other areas.

  • PDF

Development of a GIUH Model Based on River Fractal Characteristics (하천의 프랙탈 특성을 고려한 지형학적 순간단위도 개발(I))

  • Hong, Il-Pyo;Go, Jae-Ung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.565-577
    • /
    • 1999
  • The geometric patterns of a stream network in a drainage basin can be viewed as a "fractal" with fractal dimensions. Fractals provide a mathematical framework for treatment of irregular, ostensively complex shapes that show similar patterns or geometric characteristics over a range of scale. GIUH (Geomorphological Instantaneous Unit Hydrograph) is based on the hydrologic response of surface runoff in a catchment basin. This model incorporates geomorphologic parameters of a basin using Horton's order ratios. For an ordered drainage system, the fractal dimensions can be derived from Horton's laws of stream numbers, stream lengths and stream areas. In this paper, a fractal approach, which is leading to representation of a 2-parameter Gamma distribution type GIUH, has been carried out to incorporate the self similarity of the channel networks based on the high correlations between the Horton's order ratios. The shape and scale parameter of the GIUH-Nash model of IUH in terms of Horton's order ratios of a catchment proposed by Rosso(l984J are simplified by applying the fractal dimension of main stream length and channel network of a river basin. basin.

  • PDF

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

The Prototype and Structure of the Water Supply and Drainage System of the Wolji Pond During the Unified Silla Period (통일신라시대 월지(月池) 입·출수 체계의 원형과 구조)

  • Kim, Hyung-suk;Sim, Woo-kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.4
    • /
    • pp.124-141
    • /
    • 2019
  • This research explored the relationship between the water quality issue of Wolji Pond (Anapji Pond) with the maintenance of the channel flow circulation system. The water supply and drainage system closely related to the circulation system of pond has been reviewed, rather than the existing water supply and drainage system that has been analyzed in previous studies. As a result of reviewing the water supply system, it has been learned that the water supply system on the southeastern shore of Wolji Pond, being the current water supply hole, has been connected to the east side garden facility (landscaping stone, curved waterway, storage facility of water) between the north and south fence and the waterway. This separate facility group seems to have been a subject of the investigation of the eastern side of Wolji Pond, with the landscaping stones having been identified in the 1920's survey drawings. The water supply facility on the southeastern shore, being the suspected water supply hole, seems to have some connection with the granite waterway remaining on the building site of Imhaejeon (臨海殿) on the southern side of Wolji Pond. It is inferred that it provides clean water, seeing that the slope towards the southwestern shore of Wolji Pond becomes lower, the landscaping stones have been placed in the filter area, and it is present in the 1920's survey drawings and the water supply hole survey drawing of 1975. The water drainage facility on the northern shore is composed of five stages. The functions of the wooden waterway and the rectangular stone water catchment facility seem not to be only for the water drainage of Wolji Pond. In light of the points that there are wood plugs in the wooden waterway and that there is a water catchment facility in the final stage, it is judged that the water of Balcheon Stream (撥川) may be charged in reverse according to this setup. Namely, the water could enter and exit in either direction in the water drainage facility on the northern shore It also seems that the supply to the wooden waterway could be opened and shut through the water catchment facility of rectangular stone group as well. The water drainage facility on the western shore is very similar to the water drainage facility on the northern shore, so it is difficult to avoid the belief that it existed during the Silla Dynasty, or it has been produced by imitating the water drainage facility on the northern shore at some future point in time. It seems to have functioned as the water drainage facility for the supply of agricultural water during the Joseon Dynasty. The water supply and drainage facilities in Wolji Pond have been understood as a systematized distribution network that has been intertwined organically with the facility of Donggung Palace, which was the center of the Silla capital. Water has been supplied to each facility group, including Wolji Pond, through this structure; it includes the drainage system connecting to the Namcheon River (南川) through the Balcheon Stream, which was an important canal of the capital center.