• Title/Summary/Keyword: drain resistance

Search Result 238, Processing Time 0.031 seconds

Fabrication and Analysis of (SAW Self-Aligned Selectively Grown W-gate) MOSFETs (SAW Self-Aligned Selectively Grown W-GAte) MOSFETs (SAW (Self-Algined Selectively Grown W-Gate) MOSFETs의 제작 및 특성 분석)

  • Hwang, Seong-Min;Rho, Kwang-Myoung;Chung, Myung-Jun;Huh, Min;Jeong, Ha-Poong;Suh, Jeong-Won;Park, Chan-Kwang;Koh, Yo-Hwan;Lee, Dai-Hoon
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.6
    • /
    • pp.82-90
    • /
    • 1995
  • We proposed SAW (Self-Algined Selectively Grown W-Gate) MOSFET structure, and strudied electrical characteristics of the fabricated SAW MOSFETs. The threshold volgate of 0.21${\mu}$m SAW NMOSFET was 0.18 V and that of 0.24 ${\mu}$m SAW PMOSFET was -0.16 V. The subthreshold slope was 74 mV/decade for NMOSFET and 82 mV/decade for PMOSFET. The maximum transconductance of NMOSFET and PMOSFET, at V$_{GS}$=2.5 V and V$_{DS}$=1.5 V, were260 mS/mm and 122 mS/mm. The measured saturation drain current at V$_{GS}$=V$_{DS}$ =2.5 V was 0.574 mA/${\mu}$m for NMOSFET and -0.228 mA/${\mu}$m for PMOSFET. The gate resistance of SAW MOSFET was about m$\Omega$cm and the n+-p junction capacitance of SAW MOSFET was about 10% lowas than that of the conventional MOSFET's.

  • PDF

Performance Evaluation of Soil Vapor Extraction Using Prefabricated Vertical Drain System (연직배수시스템을 이용한 토양증기추출공법의 성능 평가)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.9-18
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. However, soil vapor extraction becomes ineffective in soils with low gas permeability, for example soils with air permeabilities less than 1 Darcy. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. The objective of the research described herein was to effectively incorporate PVDs into a SVE remediation system. The test results show that the gas permeability was evaluated for four different equivalent diameters, increasing the equivalent diameter results in a decrease in the calculated gas permeability. It was found that the porosity for the dry condition was greater than that of the wet condition and will allow flow rate for the same vacuum flow, offering a low resistance to the air flow.

Modeling and Design of an Active Pressure Regulating Valve(Implant) (녹내장 치료용 능동형 압력조절밸브(Implant) 모델링 및 설계)

  • Bae, Byunghoon;Kim, Nakhoon;Lee, Yeon;Kee, Hongseok;Kim, Seoho;Park Kyihwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.805-815
    • /
    • 2001
  • Glaucoma is an eye disease which is caused by abnormal high IOP (Intra Ocular Pressure). High IOP is caused by the aqueous humor which is produced consistently but not drained due to malfunction of the trabecular system which has a role of draining the aqueous humor into the venous system. Currently, there are three methods to treat glaucoma-using medicines, surgical operation, and using implant device. The first and second methods are not long acting, so the use of implants is increasing in these days in order to drain out the aqueous humor compulsory. However, though conventional implants have a capability of pressure regulation, they cannot maintain IOPs desired for different patients, and too much aqueous humor are usually drained, to cause hypotony. To solve these problems, it is needed to develop a new implant which is capable of controling the IOP actively and copes with personal difference of patients. An active glaucoma implant consists of the valve actuator, pressure sensor, controller, and power supply. In this paper, firstly, we make an analysis of the operation of a conventional implant using a bond graph and show defects and limitations of the conventional valve analytically. Secondly, we design and analyze a valve actuator considering actuation principles, resistance elements, control methods, and energy sources focused on power saving problem. Finally, using simulations the possibility of the proposed valve actuator is investigated.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

Improved Contact property in low temperature process via Ultrathin Al2O3 layer (Al2O3 층을 이용한 저온공정에서의 산화물 기반 트랜지스터 컨택 특성 향상)

  • Jeong, Seong-Hyeon;Sin, Dae-Yeong;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.55-55
    • /
    • 2018
  • Recently, amorphous oxides such as InGaZnO (IGZO) and InZnO (IZO) as a channel layer of an oxide TFT have been attracted by advantages such as high mobility, good uniformity, and high transparency. In order to apply such an amorphous oxide TFTs to a display, the stability in various environments must be ensured. In the InGaZnO which has been studied in the past, Ga elements act as a suppressor of oxygen vacancy and result in a decreased mobility at the same time. Previous studies have been showed that the InZnO, which does not contain Ga, can achieve high mobility, but has relatively poor stability under various instability environments. In this study, the TFTs using $IZO/Al_2O_3$ double layer structure were studied. The introduction of an $Al_2O_3$ interlayer between source/drain and channel causes superior electrical characteristics and electrical stability as well as reduced contact resistance with optimally perfect ohmic contact. For the IZO and $Al_2O_3$ bilayer structures, the IZO 30nm IZO channels were prepared at $Ar:O_2=30:1$ by sputtering and the $Al_2O_3$ interlayer were depostied with various thickness by ALD at $150^{\circ}C$. The optimal sample exhibits considerably good TFT performance with $V_{th}$ of -3.3V and field effect mobility of $19.25cm^2/Vs$, and reduced $V_{th}$ shift under positive bias stress stability, compared to conventional IZO TFT. The enhanced TFT performances are closely related to the nice ohmic contact properties coming from the defect passivation of the IZO surface inducing charge traps, and we will provide the detail mechanism and model via electrical analysis and transmission line method.

  • PDF

The Desing of GaAs MESFET Resistive Mixer with High Linearity (선형성이 우수한 GaAs MESFET 저항성 혼합기 설계)

  • 이상호;김준수;황충선;박익모;나극환;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.169-179
    • /
    • 1999
  • In this paper, a GaAs MESFET single-ended resistive mixer with high linearity and isolation is designed. The bias voltage of this mixer is applied only gate of GaAs MESFET to use the channel resistance. The LO is applied the gate and the RF is applied the drain through 7-pole hairpin bandpass filter to obtain the proper isolation thru LO-RF. The IF is extracted from the source with short circuit and lowpass filter. Using extracted equivalent circuits for LO and RF, conversion loss is calculated and compared with result of harmonic balance analysis. Measured conversion loss of this S-band down converter mixer is 8.2~10.5dB by considering the measured 3.0~3.4dB RF 7-pole hairpin bandpass filter loss and IP3in is 26.5dBm at Vg=-0.85~-1.0V in distortion performance.

  • PDF

Design of Low Dropout Regulator using self-cascode structure (셀프-캐스코드 구조를 적용한 LDO 레귤레이터 설계)

  • Choi, Seong-Yeol;Kim, Yeong-Seuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.993-1000
    • /
    • 2018
  • This paper proposes a low-dropout voltage regulator(LDO) using self-cascode structure. The self-cascode structure was optimized by adjusting the channel length of the source-side MOSFET and applying a forward voltage to the body of the drain-side MOSFET. The self-cascode of the input differential stage of the error amplifier is optimized to give higher transconductance, but the self-cascode of the output stage is optimized to give higher output resistance, The proposed LDO using self-cascode structure was designed by a $0.18{\mu}m$ CMOS technology and simulated using SPECTRE. The load regulation of the proposed LDO regulator was 0.03V/A, whereas that of the conventional LDO was 0.29V/A. The line regulation of the proposed LDO regulator was 2.23mV/V, which is approximately three times improvement compared to that of the conventional LDO. The transient response of the proposed LDO regulator was 625ns, which is 346ns faster than that of the conventional LDO.

Fabricated thin-film transistors with P3HT channel and $NiO_x$ electrodes (P3HT와 IZO 전극을 이용한 thin film transistors 제작)

  • Kang, Hee-Jin;Han, Jin-Woo;Kim, Jong-Yeon;Moon, Hyun-Chan;Park, Gwang-Bum;Kim, Tae-Ha;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.467-468
    • /
    • 2006
  • We report on the fabrication of P3HT-based thin-film transistors (TFT) that consist of indium-zinc-oxide (IZO), PVP (poly-vinyl phenol), and Ni for the source-drain (S/D) electrode, gate dielectric, and gate electrode, respectively. The IZO S/D electrodes of which the work function is well matched to that of P3HT were deposited on a P3HT channel by thermal evaporation of IZO and showed a moderately low but still effective transmittance of ~25% in the visible range along with a good sheet resistance of ${\sim}60{\Omega}/{\square}$. The maximum saturation current of our P3HT-based TFT was about $15{\mu}A$ at a gate bias of -40V showing a high field effect mobility of $0.05cm^2/Vs$ in the dark, and the on/off current ratio of our TFT was about $5{\times}10^5$. It is concluded that jointly adopting IZO for the S/D electrode and PVP for gate dielectric realizes a high-quality P3HT-based TFT.

  • PDF

Gate length scaling behavior and improved frequency characteristics of In0.8Ga0.2As high-electron-mobility transistor, a core device for sensor and communication applications (센서 및 통신 응용 핵심 소재 In0.8Ga0.2As HEMT 소자의 게이트 길이 스케일링 및 주파수 특성 개선 연구)

  • Jo, Hyeon-Bhin;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.436-440
    • /
    • 2021
  • The impact of the gate length (Lg) on the DC and high-frequency characteristics of indium-rich In0.8Ga0.2As channel high-electron mobility transistors (HEMTs) on a 3-inch InP substrate was inverstigated. HEMTs with a source-to-drain spacing (LSD) of 0.8 ㎛ with different values of Lg ranging from 1 ㎛ to 19 nm were fabricated, and their DC and RF responses were measured and analyzed in detail. In addition, a T-shaped gate with a gate stem height as high as 200 nm was utilized to minimize the parasitic gate capacitance during device fabrication. The threshold voltage (VT) roll-off behavior against Lg was observed clearly, and the maximum transconductance (gm_max) improved as Lg scaled down to 19 nm. In particular, the device with an Lg of 19 nm with an LSD of 0.8 mm exhibited an excellent combination of DC and RF characteristics, such as a gm_max of 2.5 mS/㎛, On resistance (RON) of 261 Ω·㎛, current-gain cutoff frequency (fT) of 738 GHz, and maximum oscillation frequency (fmax) of 492 GHz. The results indicate that the reduction of Lg to 19 nm improves the DC and RF characteristics of InGaAs HEMTs, and a possible increase in the parasitic capacitance component, associated with T-shap, remains negligible in the device architecture.

Structural, Optical, and Electrical Characterization of p-type Graphene for Various AuCl3 Doping Concentrations (AuCl3를 도핑하여 제작한 p형 그래핀의 도핑농도에 따른 구조적, 광학적, 및 전기적 특성 연구)

  • Kim, Sung;Shin, Dong Hee;Choi, Suk-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.270-275
    • /
    • 2013
  • Single-layer graphene layers have been synthesized by using chemical vapor deposition, subsequently transferred on 300 nm $SiO_2/Si$ and quartz substrates, and doped with $AuCl_3$ by spin coating for various doping concentrations ($n_D$) from 1 to 10 mM. Based on the $n_D$-dependent variations of Raman frequencies/peak-intensity ratios, sheet resistance, work function, and Dirac point, measured by structural, optical, and electrical analysis techniques, the p-type nature of graphene is shown to be strengthened with increasing $n_D$. Especially, as estimated from the drain current-gate voltage curves of graphene field effect transistors, the hole mobility is very little varied with increasing $n_D$, in strong contrast with the $n_D$-dependent large variation of electron mobility. These results suggest that $AuCl_3$ is one of the best p-type dopants for graphene and is promising for device applications of the doped graphene.