• Title/Summary/Keyword: draft genome

Search Result 108, Processing Time 0.03 seconds

Draft genome sequences of Pseudomonas syringae pv. syringae strain WSPS007 causing bacterial shoot blight on apple (사과가지마름병원세균 Pseudomonas syringae pv. syringae WSPS007 균주의 유전체 해독)

  • Lim, Yeon-Jeong;Ryu, Duck Kyu;Kang, Min Kyu;Jeon, Yongho;Park, Duck Hwan
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.80-82
    • /
    • 2019
  • Pseudomonas syringae pv. syringae strain WSPS007 was isolated from infected twigs (Malus pumila) in 2013 in Yeongju, Gyeongbuk Province, Republic of Korea. Here, we report the draft genome sequence of WSPS007 with a chromosome size of 6,238,498 bp (59.04% G+C content). The genome comprises 5,379 CDS, 16 rRNA genes, and 65 tRNA genes. The P. syringae pv. syringae strain WSPS007 genome possesses an ice-nucleating activation (INA) gene and an antifreeze operon that may be related to frost damage by this pathogen. Thus, the genome sequence determined in this study will be useful in understanding the relationship between the outbreak of bacterial shoot blight disease and frost damage in northern Gyeongbuk Province.

Status of Philippine Mango Genomics: Enriching Molecular Genomics Towards a Globally Competitive Philippine Mango Industry

  • Eureka Teresa M. Ocampo;Cris Q. Cortaga;Jhun Laurence S. Rasco;John Albert P. Lachica;Darlon V. Lantican
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.28-28
    • /
    • 2022
  • This paper presents the first genome assemblies of Philippine mangoes that provide valuable reference for varietal improvement and genomic studies on mango and related fruit crops. WE sequenced whole genomes of3 species, Mangifera odorata (Huani), Mangifera altissima (Paho), and Mangifera indica 'Carabao' (Sweet Elena). 'Carabao' is the major export variety of the Philippines; Paho is identified as vulnerable by the IUCN Red List of Threatened Species; Huani has fruit sap acrid which is the primary defense mechanism against insects and birds. We used Falcon, a diploid aware -de novo assembler to assemble SMRT generated long-read sequences. Falcon-unzip was employed to phase the output assembly producing larger contig sets (primary contigs) and shorter contigs corresponding to haplotypes (haplotigs). Assembly statistics were generated by comparing the assembly to a reference genome, Tommy Atkins, using Quality Assessment Tool (QUAST). Moreover, the extent of duplication and completeness of gene content was measured using Benchmarking Universal Single-Copy Orthologs (BUSCO). Draft assemblies with high duplications were processed using Purge Haplotigs and Purge Dups to lessen duplications with minimal impact on genome completeness. De novo assemblies of Huani, Paho and 'Carabao' were then generated with primary contig sizes of 463.64 Mb, 508.95 Mb and 401.51 Mb respectively. These draft assemblies of Huani, Paho and 'Carabao' showed 96.90%, 95.17% and 99.07% complete BUSCOs respectively which is comparable to 'Tommy Atkins' genome (98.6%). Using two mango transcriptome data (pooled RNA-seq from different mango varieties and tissues), 91-96% or 24-30 million reads were successfully mapped back for each generated assembly indicating high degree of completeness. The results obtained demonstrated the highly contiguous, phased, and near complete genome assembly of three Philippine mango species for structural and functional annotation of gene units, especially those with economic importance.

  • PDF

Genome Sequence of the Yeast Strain Sporobolomyces phaffii RJAF-17, Which Produces the Lipoamino Acid Surfactants

  • Parthiban Subramanian;Jeong-Seon Kim;Jun Heo;Yiseul Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.551-554
    • /
    • 2023
  • We report the draft genome sequence of Sporobolomyces phaffii RJAF-17, a basidiomycetous yeast strain producing lipoamino acid surfactants, N-palmitoyl leucine and N-parmitoleyl glutamine. The annotation and classification of protein-coding genes provided the basic information for the genome of strain RJAF-17, including prediction of abundant genes as well as detection of genes involved in the biosynthesis of lipoamino acids. With the molecular importance of lipoamino acids as promising alternatives to chemical surfactants, the genomic information of strain RJAF-17 can help us understand the role of biomolecules in yeasts and explore possibilities of large-scale synthesis for industrial applications.

Genomic Analysis of the Moderately Haloalkaliphilic Bacterium Oceanobacillus kimchii Strain X50T with Improved High-Quality Draft Genome Sequences

  • Hyun, Dong-Wook;Whon, Tae Woong;Kim, Joon-Yong;Kim, Pil Soo;Shin, Na-Ri;Kim, Min-Soo;Bae, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1971-1976
    • /
    • 2015
  • Oceanobacillus kimchii is a member of the genus Oceanobacillus within the family Bacillaceae. Species of the Oceanobacillus possess moderate haloalkaliphilic features and originate from various alkali or salty environments. The haloalkaliphilic characteristics of Oceanobacillus advocate they may have possible uses in biotechnological and industrial applications, such as alkaline enzyme production and biodegradation. This study presents the draft genome sequence of O. kimchii X50T and its annotation. Furthermore, comparative genomic analysis of O. kimchii X50T was performed with two previously reported Oceanobacillus genome sequences. The 3,822,411 base-pair genome contains 3,792 protein-coding genes and 80 RNA genes with an average G+C content of 35.18 mol%. The strain carried 67 and 13 predicted genes annotated with transport system and osmoregulation, respectively, which support the tolerance phenotype of the strain in high-alkali and high-salt environments.

Study of Modern Human Evolution via Comparative Analysis with the Neanderthal Genome

  • Ahmed, Musaddeque;Liang, Ping
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.230-238
    • /
    • 2013
  • Many other human species appeared in evolution in the last 6 million years that have not been able to survive to modern times and are broadly known as archaic humans, as opposed to the extant modern humans. It has always been considered fascinating to compare the modern human genome with that of archaic humans to identify modern human-specific sequence variants and figure out those that made modern humans different from their predecessors or cousin species. Neanderthals are the latest humans to become extinct, and many factors made them the best representatives of archaic humans. Even though a number of comparisons have been made sporadically between Neanderthals and modern humans, mostly following a candidate gene approach, the major breakthrough took place with the sequencing of the Neanderthal genome. The initial genome-wide comparison, based on the first draft of the Neanderthal genome, has generated some interesting inferences regarding variations in functional elements that are not shared by the two species and the debated admixture question. However, there are certain other genetic elements that were not included or included at a smaller scale in those studies, and they should be compared comprehensively to better understand the molecular make-up of modern humans and their phenotypic characteristics. Besides briefly discussing the important outcomes of the comparative analyses made so far between modern humans and Neanderthals, we propose that future comparative studies may include retrotransposons, pseudogenes, and conserved non-coding regions, all of which might have played significant roles during the evolution of modern humans.

Draft genome sequence of Fusobacterium polymorphum KCOM 1001 isolated from a human subgingival dental plaque of gingivitis lesion (사람 치은염 병소 치은연하치면 세균막에서 분리된 Fusobacterium polymorphum KCOM 1001의 유전체 염기서열 해독)

  • Park, Soon-Nang;Lim, Yun Kyong;Shin, Ja Young;Roh, Hanseong;Kook, Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.71-73
    • /
    • 2018
  • Recently, Fusobacterium nucleatum subsp. polymorphum was reclassified as Fusobacterium polymorphum based on the average nucleotide identity and genome-to-genome distance analyses. F. polymorphum is a Gram-negative, anaerobic, and filament-shaped bacterium. F. polymorphum is a part of normal flora of oral cavity and causative agent of periodontal diseases. F. polymorphum KCOM 1001 (= ChDC F119) was isolated from a human subgingival plaque of gingivitis lesion. Here, we present the complete genome sequence of F. polymorphum KCOM 1001.

Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation

  • Wang, Laiyou;Guo, Shuxian;Zeng, Bo;Wang, Shanshan;Chen, Yan;Cheng, Shuang;Liu, Bingbing;Wang, Chunyan;Wang, Yu;Meng, Qingshan
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.66-78
    • /
    • 2022
  • The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.

Draft genome sequence of Prevotella intermedia KCOM 1107 isolated from a human subgingival dental plaque of gingivitis lesion (사람 치은염 병소의 치은연하치면세균막에서 분리된 Prevotella intermedia KCOM 1107의 유전체 염기서열 해독)

  • Park, Soon-Nang;Lim, Yun Kyong;Shin, Ja Young;Roh, Hanseong;Kook, Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.222-224
    • /
    • 2017
  • Prevotella intermedia is a Gram-negative, obligately anaerobic, nonsporeforming, and nonmotile rod. P. intermedia is associated with periodontitis, pregnancy gingivitis, acute necrotic ulcerative gingivitis, endodontic infection, and rheumatoid arthritis. P. intermedia KCOM 1107 (= ChDC KB29) was isolated from a human subgingival dental plaque of gingivitis lesion. Here, we present the draft genome sequence of P. intermedia KCOM 1107.

Draft genome sequence of Fusobacterium animalis KCOM 1280 isolated from a human subgingival plaque of periodontitis lesion (사람 치주염 병소의 치은연하지면세균막에서 분리된 Fusobacterium animalis KCOM 1280의 유전체 염기서열 해독)

  • Park, Soon-Nang;Lim, Yun Kyong;Shin, Ja Young;Roh, Hanseong;Kook, Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.146-148
    • /
    • 2018
  • Fusobacterium animalis (formerly Fusobacterium nucleatum subsp. animalis) is a Gram-negative, anaerobic, and filament-shaped bacterium. F. animalis may be a part of normal flora and a periodontopathogen of human oral cavity. F. animalis KCOM 1280 (= ChDC F318) was isolated from a human periodontitis lesion. In this report, we present the draft genome sequence of F. animalis KCOM 1280.

Draft genome sequence of Porphyromonas gingivalis KCOM 2797 isolated from a human periodontitis lesion (사람 치주질환 병소에서 분리된 Porphyromonas gingivalis KCOM 2797의 유전체 염기서열 해독)

  • Park, Soon-Nang;Lim, Yun Kyong;Shin, Ja Young;Roh, Hanseong;Kook, Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.334-336
    • /
    • 2017
  • Porphyromonas gingivalis is a Gram-negative, obligately anaerobic, and nonmotile rod. P. gingivalis is a pathogen of periodontitis and endodontic infection as well as is associated with systemic diseases including atherosclerosis, preterm, and Alzheimer's diseases. P. gingivalis KCOM 2797 (= JS2) was isolated from a human periodontitis lesion. Here, we present the draft genome sequence of P. gingivalis KCOM 2797.