• Title/Summary/Keyword: downregulation

Search Result 552, Processing Time 0.032 seconds

GATA4 negatively regulates osteoblast differentiation by downregulation of Runx2

  • Song, Insun;Kim, Kabsun;Kim, Jung Ha;Lee, Young-Kyoung;Jung, Hyun-Jung;Byun, Hae-Ok;Yoon, Gyesoon;Kim, Nacksung
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.463-468
    • /
    • 2014
  • Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2.

Circular RNA hsa_circ_0005556 Accelerates Gastric Cancer Progression by Sponging miR-4270 to Increase MMP19 Expression

  • Shen, Duo;Zhao, Hongyu;Zeng, Peng;Song, Jinyun;Yang, Yiqiong;Gu, Xuefeng;Ji, Qinghua;Zhao, Wei
    • Journal of Gastric Cancer
    • /
    • v.20 no.3
    • /
    • pp.300-312
    • /
    • 2020
  • Purpose: Circular RNAs (circRNAs) are a new class of RNA molecules whose function is largely unknown. There is a growing evidence that circRNAs play an important regulatory role in the progression of a variety of human cancers. However, the exact roles and the mechanisms of circRNAs in gastric cancer are not clear. In this study, we aimed to elucidate the mechanism of hsa_circ_0005556. Materials and Methods: Real-time quantitative polymerase chain reaction was used to detect the expression of hsa_circ_0005556, miR-4270, and matrix metalloproteinase-19 (MMP19) in gastric cancer tissues and cell lines. The expression of hsa_circ_0005556 in gastric cancer cells was silenced by lentivirus, and cell proliferation, invasion, migration, and tumorigenesis in nude mice were assessed to evaluate the function of hsa_circ_0005556 in gastric cancer. Results: The expression of hsa_circ_0005556 in gastric cancer tissues and gastric cancer cell lines was higher compared to normal controls. In vitro, the downregulation of hsa_ circ_0005556 significantly inhibited proliferation, migration, and invasion of gastric cancer cells. In vivo, the downregulation of hsa_circ_0005556 suppressed tumor growth in nude mice. Conclusions: Our study shows that the hsa_circ_0005556/miR-4270/MMP19 axis is involved in proliferation, migration, and invasion of gastric cancer cells through the competing endogenous RNA (ceRNA) mechanism.

Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under Cadmium Stress

  • Adhikari, Arjun;Lee, Ko-Eun;Khan, Muhammad Aaqil;Kang, Sang-Mo;Adhikari, Bishnu;Imran, Muhammad;Jan, Rahmatullah;Kim, Kyung-Min;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.118-126
    • /
    • 2020
  • Silicon and phosphorus are elements that are beneficial for plant growth. Despite the abundant availability of silicate and phosphate in the Earth's crust, crop nutritional requirements for silicon and phosphorus are normally met through the application of fertilizer. However, fertilizers are one of the major causes of heavy metal pollution. In our study, we aimed to assess silicate and phosphate solubilization by the bacteria Enterobacter ludwigii GAK2, in the presence and absence of phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), to counteract cadmium stress in rice (Oryza sativa L). Our results showed that the GAK2-treated rice plants, grown in soil amended with phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), had significantly reduced cadmium content, and enhanced plant growth promoting characteristics including fresh shoot and root weight, plant height, and chlorophyll content. These plants showed significant downregulation of the cadmium transporter gene, OsHMA2, and upregulation of the silicon carrier gene, OsLsi1. Moreover, jasmonic acid levels were significantly reduced in the GAK2-inoculated plants, and this was further supported by the downregulation of the jasmonic acid related gene, OsJAZ1. These results indicate that Enterobacter ludwigii GAK2 can be used as a silicon and phosphorus bio-fertilizer, which solubilizes insoluble silicate and phosphate, and mitigates heavy metal toxicity in crops.

Reversal of Cisplatin Resistance by Epigallocatechin Gallate Is Mediated by Downregulation of Axl and Tyro 3 Expression in Human Lung Cancer Cells

  • Kim, Kyung-Chan;Lee, ChuHee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.61-66
    • /
    • 2014
  • Lung cancer is still the number one cause of death from cancer worldwide. The clinical effect of platinum-based chemotherapy for non-small cell lung cancer is constrained by the resistance to drug. To overcome chemo-resistance, various modified treatment including combination therapy has been used, but overall survival has not been improved yet. In this study, chemo-resistant lung cancer cells, A549/Cis and H460/Cis, were developed by long-term exposure of cells to cisplatin and the proliferative capability of these resistant cells was verified to be reduced. We found cytotoxic effect of epigallocatechin gallate (EGCG), a major catechin derived from green tea, on both the parental lung cancer cells, A549 and H460, and their cisplatin resistant cells, A549/Cis and H460/Cis. ELISA and Western blot analysis revealed that EGCG was able to increase interlukine-6 (IL-6) production per cell, whereas its downstream effector Signal transducers and activators of transcription 3 (STAT3) phosphorylation was not changed by EGCG, indicating that IL-6/STAT3 axis is not the critical signaling to be inhibited by EGCG. We next found that EGCG suppresses the expression of both Axl and Tyro 3 receptor tyrosine kinases at mRNA and protein level, explaining the cytotoxic effect of EGCG on lung cancer cells, especially, regardless of cisplatin resistance. Taken together, these data suggest that EGCG impedes proliferation of lung cancer cells including their chemo-resistant variants through downregulation of Axl and Tyro 3 expression.

Antiproliferative and Cytotoxic Effects of Resveratrol in Mitochondria-Mediated Apoptosis in Rat B103 Neuroblastoma Cells

  • Rahman, Md. Ataur;Kim, Nam-Ho;Kim, Seung-Hyuk;Oh, Sung-Min;Huh, Sung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.321-326
    • /
    • 2012
  • Resveratrol, a natural compound, has been shown to possess anti-cancer, anti-aging, anti-inflammatory, anti-microbial, and neuroprotective activities. In this study, we examined the antiproliferative and cytotoxicity properties of resveratrol in Rat B103 neuroblastoma cells; although it's molecular mechanisms for the biological effects are not fully defined. Here, we examined the cellular cytotoxicity of resveratrol by cell viability assay, antiproliferation by BrdU assay, DNA fragmentation by DNA ladder assay, activation of caspases and Bcl-2 family proteins were detected by western blot analyses. The results of our investigation suggest that resveratrol increased cellular cytotoxicity of Rat B103 neuroblastoma cells in a dose-and time-dependent manner with $IC_{50}$ of 17.86 ${\mu}M$ at 48 h. On the other hand, incubation of neuroblastoma cells with resveratrol resulted in S-phase cell cycle arrests which dose-dependently and significantly reduced BrdU positive cells through the downregulation of cyclin D1 protein. In addition, resveratrol dose-dependently and significantly downregulated the expression of anti-apoptotic protein includes Bcl-2, Bcl-xL and Mcl-1 and also activates cleavage caspase-9 and-3 via the downregulation of procaspase-9 and -3 in a dose-dependent manner which indicates that involvement of intrinsic mitochondria-mediated apoptotic pathway. In conclusion, resveratrol increases cellular cytotoxicity and inhibits the proliferation of B103 neuroblastoma cells by inducing mitochondria-mediated intrinsic caspase dependent pathway which suggests this natural compound could be used as therapeutic purposes for neuroblastoma malignancies.

Benzyldihydroxyoctenone, a Novel Nonsteroidal Antiandrogen, Shows Differential Apoptotic Induction in Prostate Cancer Cells in Response to Their Androgen Responsiveness

  • Suh, Hye-Won;Oh, Ha-Lim;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.540-544
    • /
    • 2011
  • The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgensensitivity.

Lactobacillus acidophilus and Lactobacillus crispatus Culture Supernatants Downregulate Expression of Cancer-testis Genes in the MDA-MB-231 Cell Line

  • Azam, Rosa;Ghafouri-Fard, Soudeh;Tabrizi, Mina;Modarressi, Mohammad-Hossein;Ebrahimzadeh-Vesal, Reza;Daneshvar, Maryam;Mobasheri, Maryam Beigom;Motevaseli, Elahe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4255-4259
    • /
    • 2014
  • Lactobacilli are probiotics shown to have antitumor activities. In addition, they can regulate gene expression through epigenetic mechanisms. In this study, we aimed to assess anti tumor activities of Lactobacillus acidophilus and Lactobacillus crispatus on the MDA-MB-231 breast cancer cell line. The effects of culture supernatants were determined by MTT [3-(4,5-dimethylthiazol-2-y-2,5-diphenyltetrazolium bromide] assay. Changes in expression of 5 cancer-testis antigens (CTAs), namely AKAP4, ODF4, PIWIL2, RHOXF2 and TSGA10, were analyzed by quantitative real time RT-PCR. The culture supernatants of the 2 lactobacilli inhibited MDA-MB-231 cell proliferation. In addition, transcriptional activity of all mentioned CTAs except AKAP4 was significantly decreased after 24 hour treatment with culture supernatants. This study shows that Lactobacillus acidophilus and Lactobacillus crispatus have antiproliferative activity against MDA-MB-231 cells. In addition, these lactobacilli could decrease transcriptional activity of 4 CTAs. Previous studies have shown that expression of CTAs is epigenetically regulated, so it is possible that lactobacilli cause this expression downregulation through epigenetic mechanisms. As expression of CTAs in cancers is usually associated with higher grades and poor prognosis, downregulation of their expression by lactobacilli may have clinical implications.

Calcium Mobilization Inhibits Lipid Accumulation During the Late Adipogenesis via Suppression of PPARγ and LXRα Signalings

  • Kim, Seung-Jin;Choi, Ho-Jung;Jung, Chung-Hwan;Park, Sung-Soo;Cho, Seung-Rye;Oh, Se-Jong;Kim, Eung-Seok
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.787-794
    • /
    • 2010
  • Calcium plays a role as a signaling molecule in various cellular events. It has been reported that calcium suppresses adipocyte differentiation only in the early phase of adipogenesis. Herein, we demonstrate that treatment of A23187, a mobilizer of intracellular calcium, on day 4 post adipocyte differentiation could still reduce lipid accumulation in differentiating 3T3-L1 cells for 48 h. In addition, luciferase reporter gene and RT-Q-PCR assays demonstrate that A23187 can selectively inhibit transcriptional activities and expression of PPAR$\gamma$ and LXR$\alpha$, suggesting that A23187 may reduce lipid accumulation in the late phase of adipogenesis via downregulation of PPAR$\gamma$ and LXR$\alpha$ expression and transactivation. Moreover, inhibition of HDAC activity by trichostatin A (TSA) partially blocked A23187-mediated downregulation of transcriptional activities of PPAR$\gamma$ and LXR$\alpha$. Together, our data demonstrate that calcium mobilization inhibits expression and transcriptional activities of PPAR$\gamma$ and LXR$\alpha$, resulting in reduced lipid accumulation in differentiating adipocytes, and thus, mobilization of intracellular calcium in adipocytes may serve as a new preventive and therapeutic approach for obesity.

Comparative Depigmentation Effects of Resveratrol and Its Two Methyl Analogues in α-Melanocyte Stimulating Hormone-Triggered B16/F10 Murine Melanoma Cells

  • Yoon, Hoon-Seok;Hyun, Chang-Gu;Lee, Nam-Ho;Park, Sung-Soo;Shin, Dong-Bum
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Previous research showed that resveratrol (trans-3,4',5-trihydroxystilbene) and pinostilbene (trans-3-methoxy-4',5-dihydroxystilbene) were able to inhibit tyrosinase directly; however, anti-melanogenic effects of pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene) and resveratrol trimethyl ether (RTE) have not been compared. To investigate the hypopigmentation effects of pterostilbene and RTE, melanin contents and intracellular tyrosinase activity were determined by western blot analysis. Firstly, pterostilbene showed the inhibitory effects on ${\alpha}$-melanocyte stimulating hormone (MSH)-induced melanin synthesis stronger than RTE, resveratrol, and arbutin. Pterostilbene inhibited melanin biosynthesis in a dose-dependent manner in ${\alpha}$-MSH-stimulated B16/F10 murine melanoma cells. Specifically, melanin content and intracellular tyrosinase activity were inhibited by 63% and 58%, respectively, in response to treatment with $10{\mu}m$ of pterostilbene. The results of western blot analysis indicated that pterostilbene induced downregulation of tyrosinase protein expression and suppression of ${\alpha}$-MSH-stimulated melan-A protein expression stronger than RTE or resveratrol. Based on these results, our study suggests that pterostilbene can induce hypopigmentation effects more effectively than resveratrol and RTE, and it functions via downregulation of protein expression associated with hyperpigmentation in ${\alpha}$-MSH-triggered B16/F10 murine melanoma cells.

Anticancer Activity of the Safflower Seeds (Carthamus tinctorius L.) through Inducing Cyclin D1 Proteasomal Degradation in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Hong, Se Chul;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.29 no.3
    • /
    • pp.297-304
    • /
    • 2016
  • The seed of safflower (Carthamus tinctorius L) has been reported to suppress human cancer cell proliferation. However, the mechanisms by which safflower seed inhibits cancer cell proliferation have remained nuclear. In this study, the inhibitory effect of the safflower seed (SS) on the proliferation of human colorectal cancer cells and the potential mechanism of action were examined. SS inhibited markedly the proliferation of human colorectal cancer cells (HCT116, SW480, LoVo and HT-29). In addition, SS suppressed the proliferation of human breast cancer cells (MDA-MB-231 and MCF-7). SS treatment decreased cyclin D1 protein level in human colorectal cancer cells and breast cancer cells. But, SS-mediated downregulated mRNA level of cyclin D1 was not observed. Inhibition of proteasomal degradation by MG132 attenuated cyclin D1 downregulation by SS and the half-life of cyclin D1 was decreased in SS-treated cells. In addition, SS increased cyclin D1 phosphorylation at threonine-286 and a point mutation of threonine-286 to alanine attenuated SS-mediated cyclin D1 degradation. Inhibition of ERK1/2 by PD98059 suppressed cyclin D1 phosphorylation and downregulation of cyclin D1 by SS. In conclusion, SS has anti-proliferative activity by inducing cyclin D1 proteasomal degradation through ERK1/2-dependent threonine-286 phosphorylation of cyclin D1. These findings suggest that possibly its extract could be used for treating colorectal cancer.