• Title/Summary/Keyword: downregulation

Search Result 535, Processing Time 0.034 seconds

The Study on the Effectiveness and Mechanism of Several Herbal Medicines for Development of Osteoarthritis Treatment (퇴행성관절염(退行性關節炎) 치료제 개발을 위한 수종의 한약재활성 검색 및 기전연구)

  • Huh Jeong-Eun;Cho Eun-Mi;Yang Ha-Ru;Kim Dae-Sung;Baek Yong-Hyeon;Lee Jae-Dong;Choi Do-Young;Park Dong-Suk
    • The Journal of Korean Medicine
    • /
    • v.27 no.1 s.65
    • /
    • pp.229-239
    • /
    • 2006
  • Objectives : Articular cartilage is a potential target for drugs designed to inhibit the activity of matrix metalloproteinases (MMPs) to stop or slow the destruction of the proteoglycan and collagen in the cartilage extracelluar matrix. The purpose of this study was to investigate the effects of KHBJs for cartilage-protective effect in human and rabbit articular cartilage explants. Methods : The cartilage-protective effects of KHBJ were evaluated by using glycosaminoglycan degradation assay, collagen degradation assay, colorimetric analysis of MMPs activity, and histological analysis in rabbit and human cartilage explants culture. Results : KHBJs significantly inhibited GAG and collagen release of rabbit and human cartilage explant in a concentration-dependent manner. Also, KHBJs inhibited MMP-3 and MMP-13 activities from IL-$1{\alpha}$-treated cartilage explants cultures. Histological analysis indicated that KHBJ004 reduced the degradation of the cartilage matrix compared with that of IL-$1{\alpha}$-treated cartilage explants. KHBJ004 had no harmful effect on chondrocytes viability or cartilage morphology in cartilage explants. Conclusions : These results indicate that KHBJs inhibits the degradation of proteoglycan and collagen through the downregulation of MMP-3 and MMP-13 activities without affecting the viability or morphology of IL-$1{\alpha}$-stimulated rabbit and human articular cartilage explants.

  • PDF

Panduratin A Inhibits Cell Proliferation by Inducing G0/G1 Phase Cell Cycle Arrest and Induces Apoptosis in Breast Cancer Cells

  • Liu, Qiuming;Cao, Yali;Zhou, Ping;Gui, Shimin;Wu, Xiaobo;Xia, Yong;Tu, Jianhong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.328-334
    • /
    • 2018
  • Because of the unsatisfactory treatment options for breast cancer (BC), there is a need to develop novel therapeutic approaches for this malignancy. One such strategy is chemotherapy using non-toxic dietary substances and botanical products. Studies have shown that Panduratin A (PA) possesses many health benefits, including anti-inflammatory, anti-bacterial, anti-oxidant and anticancer activities. In the present study, we provide evidence that PA treatment of MCF-7 BC cells resulted in a time- and dose-dependent inhibition of cell growth with an $IC_{50}$ of $15{\mu}M$ and no to little effect on normal human MCF-10A breast cells. To define the mechanism of these anti-proliferative effects of PA, we determined its effect critical molecular events known to regulate the cell cycle and apoptotic machinery. Immunofluorescence and flow cytometric analysis of Annexin V-FITC staining provided evidence for the induction of apoptosis. PA treatment of BC cells resulted in increased activity/expression of mitochondrial cytochrome C, caspases 7, 8 and 9 with a significant increase in the Bax:Bcl-2 ratio, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Furthermore, cell cycle analysis using flow cytometry showed that PA treatment of cells resulted in G0/G1 arrest in a dose-dependent manner. Immunoblot analysis data revealed that, in MCF-7 cell lines, PA treatment resulted in the dose-dependent (i) induction of $p21^{WAF1/Cip1}$ and p27Kip1, (ii) downregulation of Cyclin dependent kinase (CDK) 4 and (iii) decrease in cyclin D1. These findings suggest that PA may be an effective therapeutic agent against BC.

C-FLIP Promotes the Motility of Cancer Cells by Activating FAK and ERK, and Increasing MMP-9 Expression

  • Park, Deokbum;Shim, Eunsook;Kim, Youngmi;Kim, Young Myeong;Lee, Hansoo;Choe, Jongseon;Kang, Dongmin;Lee, Yun-Sil;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.184-195
    • /
    • 2008
  • We examined the role of c-FLIP in the motility of HeLa cells. A small interfering RNA (siRNA) directed against c-FLIP inhibited the adhesion and motility of the cells without affecting their growth rate. The long form of c-FLIP ($c-FLIP_L$), but not the short form ($c-FLIP_S$), enhanced adhesion and motility. Downregulation of $c-FLIP_L$ with siRNA decreased phosphorylation of FAK and ERK, while overexpression of $c-FLIP_L$ increased their phosphorylation. Overexpression of FAK activated ERK, and enhanced the motility of HeLa cells. FRNK, an inhibitory fragment of FAK, inhibited ERK and decreased motility. Inhibition of ERK also significantly suppressed $c-FLIP_L$-promoted motility. Inhibition of ROCK by Y27632 suppressed the $c-FLIP_L$-promoted motility by reducing phosphorylation of FAK and ERK. Overexpression of $c-FLIP_L$ increased the expression and secretion of MMP-9, and inhibition of MMP-9 by Ilomastat reduced $c-FLIP_L$- promoted cell motility. A caspase-like domain (amino acids 222-376) was found to be necessary for the $c-FLIP_L$-promoted cell motility. We conclude that $c-FLIP_L$ promotes the motility of HeLa cells by activating FAK and ERK, and increasing MMP-9 expression.

Temporal and Spatial Downregulation of Arabidopsis MET1 Activity Results in Global DNA Hypomethylation and Developmental Defects

  • Kim, Minhee;Ohr, Hyonhwa;Lee, Jee Woong;Hyun, Youbong;Fischer, Robert L.;Choi, Yeonhee
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.611-615
    • /
    • 2008
  • DNA methylation is an epigenetic mechanism for gene silencing. In Arabidopsis, MET1 is the primary DNA methyltransferase that maintains CG DNA methylation. Plants having an overall reduction of MET1 activity, caused by a met1 mutation or a constitutively expressed MET1 antisense gene, display genome hypomethylation, inappropriate gene and transposon transcription, and developmental abnormalities. However, the effect of a transient reduction in MET1 activity caused by inhibiting MET1 expression in a restricted set of cells is not known. For this reason, we generated transgenic plants with a MET1 antisense gene fused to the DEMETER (DME) promoter (DME:MET1 a/s). Here we show that DME is expressed in leaf primordia, lateral root primoridia, in the region distal to the primary root apical meristem, which are regions that include proliferating cells. Endogenous MET1 expression was normal in organs where the DME:MET1 a/s was not expressed. Although DME promoter is active only in a small set of cells, these plants displayed global developmental abnormalities. Moreover, centromeric repeats were hypomethylated. The developmental defects were accumulated by the generations. Thus, not maintaining CG methylation in a small population of proliferating cells flanking the meristems causes global developmental and epigenetic abnormalities that cannot be rescued by restoring MET1 activity. These results suggest that during plant development there is little or no short-term molecular memory for reestablishing certain patterns of CG methylation that are maintained by MET1. Thus, continuous MET1 activity in dividing cells is essential for proper patterns of CG DNA methylation and development.

Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway

  • Gong, Kai;Qu, Bo;Wang, Cairu;Zhou, Jingsong;Liao, Dongfa;Zheng, Wei;Pan, Xianming
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.393-400
    • /
    • 2017
  • Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by lack of insulin and high glucose levels. T2DM can cause bone loss and fracture, thus leading to diabetic osteoporosis. Promoting osteogenic differentiation of osteoblasts may effectively treat diabetic osteoporosis. We previously reported that Sirtuin 1 (Sirt1), a $NAD^+$-dependent deacetylase, promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. We also found that miR-132 regulates osteogenic differentiation by downregulating Sirt1 in a $PPAR{\beta}/{\delta}$-dependent manner. The ligand-activated transcription factor, $PPAR{\alpha}$, is another isotype of the peroxisome proliferator-activated receptor family that helps maintain bone homeostasis and promot bone formation. Whether the regulatory role of $PPAR{\alpha}$ in osteogenic differentiation is mediated via Sirt1 remains unclear. In the present study, we aimed to determine this role and the underlying mechanism by using high glucose (HG) and free fatty acids (FFA) to mimic T2DM in MC3T3-E1 cells. The results showed that HG-FFA significantly inhibited expression of $PPAR{\alpha}$, Sirt1 and osteogenic differentiation, but these effects were markedly reversed by $PPAR{\alpha}$ overexpression. Moreover, siSirt1 attenuated the positive effects of $PPAR{\alpha}$ on osteogenic differentiation, suggesting that $PPAR{\alpha}$ promotes osteogenic differentiation in a Sirt1-dependent manner. Luciferase activity assay confirmed interactions between $PPAR{\alpha}$ and Sirt1. These findings indicate that $PPAR{\alpha}$ promotes osteogenic differentiation via the Sirt1-dependent signaling pathway.

G0/G1 Cell Cycle Arrest and Activation of Caspases in Honokiol-mediated Growth Inhibition of Human Gastric Cancer Cells

  • Kang, You-Jin;Chung, Hwa-Jin;Min, Hye-Young;Song, Ja-Young;Park, Hyen-Joo;Youn, Ui-Joung;Bae, Ki-Hwan;Kim, Yeong-Shik;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has been shown to have the anti-angiogenic, anti-invasive and cancer chemopreventive activities, but the molecular mechanism of actions has not been fully elucidated yet. In the present study, we investigated the effect of honokiol on the growth inhibitory activity in cultured SNU-638 human gastric cancer cells. We found that honokiol exerted potent antiproliferative activity against SNU-638 cells. Honokiol also arrested the cell cycle progression at the G0/G1 phase and induced the apoptotic cell death in a concentration-dependent manner. The cell cycle arrest was well correlated with the downregulation of Rb, cyclin D1, cyclin A, cyclin E, and CDK4 expression, and the induction of cyclin-dependent kinase inhibitor p27. The increase of sub-G1 peak by honokiol was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, the cleavage of poly(ADPribose) polymerase, and the sequential activation of caspase cascade. These findings suggest the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of honokiol in human gastric cancer cell.

Overexpression of Cyclin E and its Low Molecular Weight Isoforms Cooperate with Loss of p53 in Promoting Oncogenic Properties of MCF-7 Breast Cancer Cells

  • Montazeri, Hamed;Bouzari, Saeid;Azadmanesh, Kayhan;Ostad, Seyed Nasser;Ghahremani, Mohammad Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7575-7582
    • /
    • 2015
  • Cyclin E, a key coordinator of the G1 to S transition in the cell cycle, may be deregulated in several malignancies, including breast cancer. The most significant aberration in cyclin E is its elastase mediated proteolytic cleavage into tumor specific low molecular weight isoforms (LMW-Es). LMW-Es are biochemically hyperactive and biologically drive tumorigenesis in transgenic mouse models. Additionally, expression of LMW-Es has been correlated with poor survival in breast cancer cases. Here we determine whether expression of LMW-Es in a breast cancer cell line that is naturally devoid of these deregulated forms would alter their progression through each phase of the cell cycle. The results revealed that LMW-Es expression resulted in an increased doubling time, concomitant with a predominant increase in the population in the S phase of the cell cycle. Moreover, downregulation of p53 in LMW-Es cells resulted in additional shortening of the doubling time and enrichment of cells in the S and G2/M phases of the cell cycle. Furthermore, expression of LMW-Es sensitized cells to ${\beta}$-estradiol (E2) mediated growth and changed expression patterns of estrogen receptor and Bcl-2. Intriguingly, expression of LMW-Es could surpass anti-apoptotic effects raised by p53 upregulation. Taken together these studies suggest that overexpression of LMW-Es in collaboration with p53 loss results in altered g rowth properties of MCF-7 cells, enhancing the oncogenic activity of these ER positive breast cancer cells.

Effects of Emodin Extracted from Chinese Herbs on Proliferation of Non-small Cell Lung Cancer and Underlying Mechanisms

  • He, Lin;Bi, Juan-Juan;Guo, Qian;Yu, Yin;Ye, Xiu-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1505-1510
    • /
    • 2012
  • To aim of this was to observe emodin-mediated cytotoxicity and its influence on Rad51 and ERCC1 expressionin non-small cell lung cancer (NSCLC). NSCLC cells were cultured in vitro with emodin at various concentrations (0, 25, 50, 75 and $100\;{\mu}mol/L$) for 48h and the proliferation inhibition rate was determined by the MTT method. Then, NSCLC were treated with emodin (SK-MES-1 $40\;{\mu}mol/L$, A549 $70\;{\mu}mol/L$) or $20\;{\mu}mol/L$ U0126 (an ERK inhibitor) for 48 h, or with various concentrations of emodin for 48 h and the protein and mRNA expressions of ERCC1 and Rad51 were determined by RT-PCR and Western blot assay, respectively. Emodin exerted a suppressive effect on the proliferation of NSCLC in a concentration dependent manner. Protein and mRNA expression of ERCC1 and Rad51 was also significantly decreased with the dose. Vacuolar degeneration was observed in A549 and SK-MES-1 cell lines after emodin treatment by transmission electron microscopy. Emodin may thus inhibited cell proliferation in NSCLC cells by downregulation ERCC1 and Rad51.

Targeting Renal Cell Carcinoma with Gambogic Acid in Combination with Sunitinib in Vitro and in Vivo

  • Jiang, Xiao-Liang;Zhang, Yao;Luo, Chun-Li;Wu, Xiao-Hou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6463-6468
    • /
    • 2012
  • Purpose: To evaluated the effect of the gambogic acid (GA), one of the effective components of Garcinia, in combination with a new multi-targeted oral medication, sunitinib (SU) on renal cancer cell proliferation in vitro and on tumor growth in vivo. Methods: After treatment with GA or SU, either alone or in combination, MTT and FACS analysis were used to examine cell viability and cycle distribution of the renal carcinoma cell lines 786-0 and Caki-1. Western blotting was employed to examine the expression of proteins related to the cell cycle and vascular formation. Furthermore, a xenograft model was applied to study the antitumor efficacy of SU or GA alone or in combination, with immunohistochemistry to detect expression of proteins related to xenograft growth and angiogenesis. Western blotting was used to examine NF-${\kappa}B$ signaling pathway elements in xenografts. Results: Treatment of 786-0 and Caki-1 cells with GA or SU resulted in decreased tumor cell proliferation, especially with joint use. Cells accumulated more strongly in the sub-G1 phase after joint treatment with GA and SU than treatment of GA and SU alone. Western blotting arrays showed 1 protein significantly upregulated, 2 proteins downregulated, and 2 proteins unchanged. Moreover, combined use of GA and SU inhibited the growth and angiogenesis of xenografts generated from Caki-1 significantly. Immunohistochemistry arrays showed downregulation of the expression of proteins promoting xenograft growth and angiogenesis, and Western blotting showed inhibition of the NF-${\kappa}B$ signaling pathway after treatment by GA alone and in combination with SU in xenografts. Conclusions: Our results show that the joint use of GA and SU can provide greater antitumor efficacy compared to either drug alone and thus may offer a new treatment strategy for renal cell carcinoma.

Vitexicarpin Induces Apoptosis in Human Prostate Carcinoma PC-3 Cells through G2/M Phase Arrest

  • Meng, Fan-Min;Yang, Jing-Bo;Yang, Chun-Hui;Jiang, Yu;Zhou, Yong-Feng;Yu, Bo;Yang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6369-6374
    • /
    • 2012
  • Vitexicarpin (3', 5-dihydroxy-3, 4', 6, 7-tetramethoxyflavone), a polymethoxyflavone isolated from Viticis Fructus (Vitex rotundifolia Linne fil.), has long been used as an anti-inflammatory herb in traditional Chinese medicine. It has also been reported that vitexicarpin can inhibit the growth of various cancer cells. However, there is no report elucidating its effect on human prostate carcinoma cells. The aim of the present study was to examine the apoptotic induction activity of vitexicarpin on PC-3 cells and molecular mechanisms involved. MTT studies showed that vitexicarpin dose-dependently inhibited growth of PC-3 cells with an $IC_{50}{\sim}28.8{\mu}M$. Hoechst 33258 staining further revealed that vitexicarpin induced apoptotic cell death. The effect of vitexicarpin on PC-3 cells apoptosis was tested using prodium iodide (PI)/Annexin V-FITC double staining and flow cytometry. The results indicated that vitexicarpin induction of apoptotic cell death in PC-3 cells was accompanied by cell cycle arrest in the G2/M phase. Furthermore, our study demonstrated that vitexicarpin induction of PC-3 cell apoptosis was associated with upregulation of the proapoptotic protein Bax, and downregulation of antiapoptotic protein Bcl-2, release of Cytochrome c from mitochondria and decrease in mitochondrial membrane potential. Our findings suggested that vitexicarpin may become a potential leading drug in the therapy of prostate carcinoma.