DOI QR코드

DOI QR Code

Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway

  • Gong, Kai (Department of Orthopaedics, Chengdu Military General Hospital) ;
  • Qu, Bo (Department of Orthopaedics, Chengdu Military General Hospital) ;
  • Wang, Cairu (Department of Orthopaedics, Chengdu Military General Hospital) ;
  • Zhou, Jingsong (Department of Orthopaedics, Chengdu Military General Hospital) ;
  • Liao, Dongfa (Department of Orthopaedics, Chengdu Military General Hospital) ;
  • Zheng, Wei (Department of Orthopaedics, Chengdu Military General Hospital) ;
  • Pan, Xianming (Department of Orthopaedics, Chengdu Military General Hospital)
  • Received : 2017.02.06
  • Accepted : 2017.05.03
  • Published : 2017.06.30

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by lack of insulin and high glucose levels. T2DM can cause bone loss and fracture, thus leading to diabetic osteoporosis. Promoting osteogenic differentiation of osteoblasts may effectively treat diabetic osteoporosis. We previously reported that Sirtuin 1 (Sirt1), a $NAD^+$-dependent deacetylase, promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. We also found that miR-132 regulates osteogenic differentiation by downregulating Sirt1 in a $PPAR{\beta}/{\delta}$-dependent manner. The ligand-activated transcription factor, $PPAR{\alpha}$, is another isotype of the peroxisome proliferator-activated receptor family that helps maintain bone homeostasis and promot bone formation. Whether the regulatory role of $PPAR{\alpha}$ in osteogenic differentiation is mediated via Sirt1 remains unclear. In the present study, we aimed to determine this role and the underlying mechanism by using high glucose (HG) and free fatty acids (FFA) to mimic T2DM in MC3T3-E1 cells. The results showed that HG-FFA significantly inhibited expression of $PPAR{\alpha}$, Sirt1 and osteogenic differentiation, but these effects were markedly reversed by $PPAR{\alpha}$ overexpression. Moreover, siSirt1 attenuated the positive effects of $PPAR{\alpha}$ on osteogenic differentiation, suggesting that $PPAR{\alpha}$ promotes osteogenic differentiation in a Sirt1-dependent manner. Luciferase activity assay confirmed interactions between $PPAR{\alpha}$ and Sirt1. These findings indicate that $PPAR{\alpha}$ promotes osteogenic differentiation via the Sirt1-dependent signaling pathway.

Keywords

References

  1. Ali, A.A., Weinstein, R.S., Stewart, S.A., Parfitt, A.M., Manolagas, S.C., and Jilka, R.L. (2005). Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology. 146, 1226-1235. https://doi.org/10.1210/en.2004-0735
  2. Backesjo, C.M., Li, Y., Lindgren, U., and Haldosen, L.A. (2006). Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J. Bone Miner Res. 21, 993-1002. https://doi.org/10.1359/jbmr.060415
  3. Blakytny, R., Spraul, M., and Jude, E.B. (2011). Review: The diabetic bone: a cellular and molecular perspective. Int. J. Low Extrem Wounds. 10, 16-32. https://doi.org/10.1177/1534734611400256
  4. Borra, M.T., Smith, B.C., and Denu, J.M. (2005). Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187-17195. https://doi.org/10.1074/jbc.M501250200
  5. Chang, F., Jaber, L.A., Berlie, H.D., and O'Connell, M.B. (2007). Evolution of peroxisome proliferator-activated receptor agonists. Ann. Pharmacother. 41, 973-983. https://doi.org/10.1345/aph.1K013
  6. Choi, S.E., and Kemper, J.K. (2013). Regulation of SIRT1 by microRNAs. Mol. Cells 36, 385-392. https://doi.org/10.1007/s10059-013-0297-1
  7. Cohen-Kfir, E., Artsi, H., Levin, A., Abramowitz, E., Bajayo, A., Gurt, I., Zhong, L., D'Urso, A., Toiber, D., Mostoslavsky, R., et al. (2011). Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology 152, 4514-4524. https://doi.org/10.1210/en.2011-1128
  8. Desvergne, B., and Wahli, W. (1999). Peroxisome proliferatoractivated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688.
  9. Feng, Z., Deng, H., Du, J., Chen, D., Jiang, R., and Liang, X. (2011). Lentiviral-mediated RNAi targeting p38MAPK ameliorates high glucose-induced apoptosis in osteoblast MC3T3-E1 cell line. Indian J. Exp. Biol. 49, 94-104.
  10. Finkel, T., Deng, C.X., and Mostoslavsky, R. (2009). Recent progress in the biology and physiology of sirtuins. Nature 460, 587-591. https://doi.org/10.1038/nature08197
  11. Gong, K., Qu, B., Liao, D., Liu, D., Wang, C., Zhou, J., and Pan, X. (2016). MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor beta/delta-dependent manner. Biochem. Biophys. Res. Commun. 478, 260-267. https://doi.org/10.1016/j.bbrc.2016.07.057
  12. Haigis, M.C., and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253-295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
  13. Issemann, I., and Green, S. (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645-650. https://doi.org/10.1038/347645a0
  14. Lecka-Czernik, B. (2010). PPARs in bone: the role in bone cell differentiation and regulation of energy metabolism. Curr. Osteoporos. Rep. 8, 84-90. https://doi.org/10.1007/s11914-010-0016-1
  15. Mayoral, R., Osborn, O., McNelis, J., Johnson, A.M., Oh, D.Y., Izquierdo, C.L., Chung, H., Li, P., Traves, P.G., Bandyopadhyay, G., et al. (2015). Adipocyte SIRT1 knockout promotes PPARgamma activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Mol. Metab. 4, 378-391. https://doi.org/10.1016/j.molmet.2015.02.007
  16. Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M.W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776. https://doi.org/10.1038/nature02583
  17. Qiang, L., Wang, L., Kon, N., Zhao, W., Lee, S., Zhang, Y., Rosenbaum, M., Zhao, Y., Gu, W., Farmer, S.R., et al. (2012). Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150, 620-632. https://doi.org/10.1016/j.cell.2012.06.027
  18. Qu, B., Ma, Y., Yan, M., Gong, K., Liang, F., Deng, S., Jiang, K., Ma, Z., and Pan, X. (2016). Sirtuin1 promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor gamma in MC3T3-E1 cells. Biochem. Biophys.Res. Commun. 478, 439-445. https://doi.org/10.1016/j.bbrc.2016.06.154
  19. Raisz, L.G. (2005). Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 115, 3318-3325. https://doi.org/10.1172/JCI27071
  20. Rakel, A., Sheehy, O., Rahme, E., and LeLorier, J. (2008). Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab. 34, 193-205. https://doi.org/10.1016/j.diabet.2007.10.008
  21. Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113-118. https://doi.org/10.1038/nature03354
  22. Schwartz, A.V. (2016). Efficacy of osteoporosis therapies in diabetic patients. Calcif. Tissue Int. 100, 165-173.
  23. Stunes, A.K., Westbroek, I., Gustafsson, B.I., Fossmark, R., Waarsing, J.H., Eriksen, E.F., Petzold, C., Reseland, J.E., and Syversen, U. (2011). The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats. BMC Endocr. Disord. 11, 11. https://doi.org/10.1186/1472-6823-11-11
  24. Syversen, U., Stunes, A.K., Gustafsson, B.I., Obrant, K.J., Nordsletten, L., Berge, R., Thommesen, L., and Reseland, J.E. (2009). Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)alpha agonist fenofibrate and the PPARgamma agonist pioglitazone. BMC Endocr. Disord. 9, 10. https://doi.org/10.1186/1472-6823-9-10
  25. Takano, M., Otsuka, F., Matsumoto, Y., Inagaki, K., Takeda, M., Nakamura, E., Tsukamoto, N., Miyoshi, T., Sada, K.E., and Makino, H. (2012). Peroxisome proliferator-activated receptor activity is involved in the osteoblastic differentiation regulated by bone morphogenetic proteins and tumor necrosis factor-alpha. Mol. Cell Endocrinol. 348, 224-232. https://doi.org/10.1016/j.mce.2011.08.027
  26. Wang, Y., Liang, Y., and Vanhoutte, P.M. (2011). SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model. FEBS Lett. 585, 986-994. https://doi.org/10.1016/j.febslet.2010.11.047
  27. Yao, H., and Rahman, I. (2012). Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem. Pharmacol. 84, 1332-1339. https://doi.org/10.1016/j.bcp.2012.06.031
  28. Yoon, J.C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., Adelmant, G., Stafford, J., Kahn, C.R., Granner, D.K., et al. (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131-138. https://doi.org/10.1038/35093050
  29. You, L., Gu, W., Chen, L., Pan, L., Chen, J., and Peng, Y. (2014). MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. Int. J. Clin. Exp. Pathol. 7, 7249-7261.
  30. Zhang, W.L., Meng, H.Z., Yang, R.F., Yang, M.W., Sun, G.H., Liu, J.H., Shi, P.X., Liu, F., and Yang, B. (2016). Melatonin suppresses autophagy in type 2 diabetic osteoporosis. Oncotarget 7, 52179-52194. https://doi.org/10.18632/oncotarget.10538

Cited by

  1. Sirt1/Foxo Axis Plays a Crucial Role in the Mechanisms of Therapeutic Effects of Erzhi Pill in Ovariectomized Rats vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/9210490
  2. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells vol.243, pp.6, 2017, https://doi.org/10.1177/1535370218759636
  3. MiR-155 inhibition alleviates suppression of osteoblastic differentiation by high glucose and free fatty acids in human bone marrow stromal cells by upregulating SIRT1 vol.472, pp.4, 2017, https://doi.org/10.1007/s00424-020-02372-7
  4. Peroxisome Proliferator-Activated Receptors and Caloric Restriction—Common Pathways Affecting Metabolism, Health, and Longevity vol.9, pp.7, 2017, https://doi.org/10.3390/cells9071708
  5. Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm vol.12, pp.11, 2020, https://doi.org/10.3390/nu12113476
  6. When Activator and Inhibitor of PPARα Do the Same: Consequence for Differentiation of Human Intestinal Cells vol.9, pp.9, 2017, https://doi.org/10.3390/biomedicines9091255