• Title/Summary/Keyword: doubly-fed induction generator (DFIG)

Search Result 123, Processing Time 0.028 seconds

Operation Scheme for a Wind Farm to Mitigate Output Power Variation

  • Lee, Sung-Eun;Won, Dong-Jun;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.869-875
    • /
    • 2012
  • Because of the nature of wind, the output power of wind turbines fluctuates according to wind speed variation. Therefore, many countries have set up wind-turbine interconnection standards usually named as Grid-Code to regulate the output power of wind farms to improve power system reliability and power quality. This paper proposes three operation modes of wind farms such as maximum power point tracking (MPPT) mode, single wind turbine control mode and wind farm control mode to control the output power of wind turbines as well as overall wind farms. This paper also proposes an operation scheme of wind farm to alleviate power fluctuation of wind farm by choosing the appropriate control mode and coordinating multiple wind turbines in consideration of grid conditions. The performance of the proposed scheme is verified via simulation studies in PSCAD/EMTDC with doubly-fed induction generator (DFIG) based wind turbine models.

Reduction of Stator Current Ripples in Doubly Fed Induction Generator (이중여자 유도형 풍력발전기의 고정자 전류 맥동 저감에 관한 연구)

  • Kim, Sung-Jin;Hwang, Seon-Hwan;Kim, Jang-Mok;Lee, Jae-Kyung
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.51-53
    • /
    • 2008
  • DFIG(Doubly Fed Induction Generator)를 이용한 풍력 발전 시스템의 경우 고정자 측에 발전된 유효전력 및 무효전력 제어를 위해 회전자 전류제어가 필요하다. 본 논문에서는 제안된 알고리즘을 통해 DFIG의 고정자 전류에 발생한 전류 리플을 분석하고 보상 성분을 회전자 전류 제어에 반영함으로써 고정자 전류 리플을 저감시켰다. 제안된 알고리즘은 실험을 통해 검증하였다.

  • PDF

Minimization of Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Unbalanced Grid Condition

  • Park, Yonggyun;Suh, Yongsug;Go, Yuran
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.273-274
    • /
    • 2012
  • This paper investigates control algorithms for a doubly fed induction generator(DFIG) with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power system under unbalanced grid conditions. Two different control algorithms to compensate for unbalanced conditions are proposed. Evaluation factors of control algorithm are fault ride-through(FRT) capability, efficiency, harmonic distortions and torque pulsation. Zero regulated negative sequence stator current control algorithm has the most effective performance concerning FRT capability and efficiency. Ripple-free control algorithm nullifies oscillation component of active power and reactive power. Ripple-free control algorithm shows the least harmonic distortions and torque pulsation. Combination of zero regulated negative sequence stator current and ripple-free control algorithm control algorithm depending on the operating requirements and depth of grid unbalance presents the most optimized performance factors under the generalized unbalanced operating conditions leading to high performance DFIG wind turbine system.

  • PDF

Modified Control Scheme to Regulate the Active Power Output of Doubly Fed Induction Generator (이중여자 권선형 유도발전기의 출력조정을 위한 제어 기법)

  • Park, Young-Ho;Won, Dong-Jun;Park, Jin-Woo;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1232-1233
    • /
    • 2007
  • As the number of wind turbines installed increase, the power from wind energy starts to replace conventional generation units and its influence on power system can not be neglected. Because of the intermittent nature of wind resource, the output power of wind turbine fluctuates according to wind speed variation. In this point of view, it is necessary for wind turbines to be equipped with power regulation ability. The doubly fed induction generator (DFIG) is one of the main techniques used in variable speed wind turbines. This thesis focuses on the development of modified control scheme of DFIG to regulate output power. The proposed control scheme achieves active power output regulation so as to stabilize the power system.

  • PDF

Implementation of Grid Connection of DFIG for Wind Power Generation System

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.143-145
    • /
    • 2006
  • This paper presents an overall control algorithm for a grid-connected wind-power generation system using a DFIG(doubly-fed induction generator) fed by back-to-back PWM converters. The control of DFIG is based on a stator-flux oriented vector control. The system enables not only fast and smooth synchronization but also high performance regulation of active and reactive power. Experimental results shows The feasibility of the control algorithm.

  • PDF

Loss Minimization of DFIG for Wind Power Generation

  • Abo-Khalil, Ahmed G.;Park, Hong-Geuk;Lee, Dong-Choon;Lee, Se-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.315-317
    • /
    • 2007
  • This paper proposes a loss minimization algorithm for doubly-fed induction generator (DFIG) by controlling the stator reactive power. The proposed strategy directly controls the rotor current to achieve the operating point of minimum generator loss and maximum power point tracking. The maximum power is obtained by tracking the q-axis rotor current with generator speed variation and the minimum generator loss is achieved by controlling the d-axis rotor current. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

A DVR Control for Compensating Unbalanced Voltage Dips of a DFIG System using Zero Sequence Components

  • Thinh, Quach Ngoc;Ko, Ji-Han;Kim, Dong-Wan;Kim, Eel-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.62-68
    • /
    • 2013
  • The dynamic voltage restorer (DVR) is an effective protection device for wind turbine generators based on doubly-fed induction generator (DFIG) that is operated under unbalanced voltage dip conditions. The compensating voltages of the DVR depend on the voltage dips and on the influence of the zero sequence component. The zero sequence component results in high insulation costs and asymmetry in terminal voltages. This paper proposes the use of a proportional-resonant controller in stationary reference frames for controlling zero sequence components in the DVR to protect the DFIG during unbalanced voltage dips. To enhance the proposed control method, a comparison is carried out between two cases: with and without using the control of a zero sequence component. Simulation results are presented to verify the effectiveness of the proposed control method by using the Psim simulation program.

Comparison of Squirrel cage and Wound induction generator characteristics in Wind Power System (농형 유도발전기와 권선형 유도발전기의 특성비교)

  • Kim, Chan-Ki;Lee, Won-Kyo;Im, Cheol-Kyu
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.469-471
    • /
    • 2005
  • Wind farms employs induction generators which are two type, one is Squirrel cage for fixed speed wind turbines and the other is Wound induction generator (doubly fed induction generator DFIG) for variable speed wind turbines. this paper describes grid connection scheme of wind power system using two type induction generators and simulation results show the characteristics of two type induction generators.

  • PDF

Gearless Doubly-fed Induction Generator for Wind Power Generation (풍력발전용 기어리스 이중여자 유도 발전기)

  • Park, Taesik;Moon, Chaejoo;Kim, Seonghwan
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.81-84
    • /
    • 2017
  • As the demands for offshore wind power generation systems on a large scale have grown dramatically, and extensive developments in PMSG (Permanent Magnet Synchronous Generator) and DFIG (Doubly-fed Induction Generator) wind turbine system have been going on. However, the wind power systems have been more sophisticated, and their reliability becomes critical issues. Averagely, wind turbines have shut down for about a week per year for repairs and maintenance. Especially the high speed gearbox of DFIG is inevitable components for high power generation, but becomes one of the critical failures. In this paper, a new reliable gearless wind turbine structure is proposed. The gearless wind turbine can operate on a maximum power points by controlling the speed of a rotational stator. The proposed approach is verified by PSIM simulations, resulting in increased energy reliability.

Power Control of Doubly-Fed Induction Generators for Wind Power Generation under Unbalanced Grid Voltage (불평형 계통전압시 풍력발전용 이중여자 유도발전기의 전력제어)

  • Jang Jeong-Ik;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.274-276
    • /
    • 2006
  • 본 논문은 계통전압 불평형시 풍력발전용 DFIG (Doubly-Fed Induction Generator)의 유효전력과 무효전력 맥동을 제어하는 새로운 기법을 제시한다. 발전기 토크식을 대칭좌표법을 이용하여 정상분과 역상분의 전류로 표현하고 토크 맥동을 제거하기 위한 회전자 역상분의 지령전류를 유도한다. PSCAD/EMDTC를 이용한 시뮬레이션을 통해 제안한 방법의 타당성을 검증한다.

  • PDF